Robust & Low-Complexity Task Scheduling Algorithms for a Mobile Edge Computing System
With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A Constrained Markov Decision Process (CMDP) formulation can capture the trade-off between computation time and power consumption. However, the optim...
Uložené v:
| Vydané v: | IEEE transactions on green communications and networking Ročník 9; číslo 3; s. 1340 - 1353 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2473-2400, 2473-2400 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A Constrained Markov Decision Process (CMDP) formulation can capture the trade-off between computation time and power consumption. However, the optimal policy obtained by solving the CMDP problem may be sensitive to the changes in the task arrival rate. Moreover, there may be constraint violations. To address these issues, in this paper, we provide a Robust Return Robust CMDP (R3CMDP) formulation that minimizes the worst-case total discounted power consumption subject to a constraint on the worst-case total discounted deadline violations. Based on robust Dynamic Programming (DP) methods, we propose a task allocation algorithm that provably provides the optimal R3C policy. We also establish that the proposed algorithm incorporates robustness into the MDP framework with almost no additional complexity. Furthermore, we propose a low-complexity robust heuristic that can be implemented online, unlike the former algorithm. The proposed algorithms are implemented in a Network Simulator-3 (ns-3) based IoT simulation package. Numerical and simulation results establish that the proposed algorithms are more robust compared to the state-of-the-art algorithms in the face of varying task arrival rates. |
|---|---|
| AbstractList | With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A Constrained Markov Decision Process (CMDP) formulation can capture the trade-off between computation time and power consumption. However, the optimal policy obtained by solving the CMDP problem may be sensitive to the changes in the task arrival rate. Moreover, there may be constraint violations. To address these issues, in this paper, we provide a Robust Return Robust CMDP (R3CMDP) formulation that minimizes the worst-case total discounted power consumption subject to a constraint on the worst-case total discounted deadline violations. Based on robust Dynamic Programming (DP) methods, we propose a task allocation algorithm that provably provides the optimal R3C policy. We also establish that the proposed algorithm incorporates robustness into the MDP framework with almost no additional complexity. Furthermore, we propose a low-complexity robust heuristic that can be implemented online, unlike the former algorithm. The proposed algorithms are implemented in a Network Simulator-3 (ns-3) based IoT simulation package. Numerical and simulation results establish that the proposed algorithms are more robust compared to the state-of-the-art algorithms in the face of varying task arrival rates. |
| Author | Roy, Arghyadip Biswas, Nilanjan |
| Author_xml | – sequence: 1 givenname: Arghyadip orcidid: 0000-0001-9955-9514 surname: Roy fullname: Roy, Arghyadip email: arghyadip@iitg.ac.in organization: Mehta Family School of Data Science & Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati, India – sequence: 2 givenname: Nilanjan surname: Biswas fullname: Biswas, Nilanjan email: nbiswas.ece@nitdgp.ac.in organization: Electronics and Communication Engineering Department, National Institute of Technology Durgapur, Durgapur, India |
| BookMark | eNpNkE1PwkAURScGExH5ASYuJjFxV5yv0umSNIgmqInAetJOX6HYdnBmGuXf2wYWrN5bnHtvcm7RoDENIHRPyYRSEj-vF8nHhBEmJlzIiMX8Cg2ZiHjABCGDi_8GjZ3bE0JYHNJpzIdo82Wy1nn8hJfmN0hMfajgr_RHvE7dN17pHeRtVTZbPKu2xpZ-VztcGItT_G6ysgI8z7eA-1zre2x1dB7qO3RdpJWD8fmO0OZlvk5eg-Xn4i2ZLQPNxNQHsQ6BCinyaUwgjyVIySKSSanzMNIaJE9lERZUpwUBDiIjkZYhF1rTIudc8BF6PPUerPlpwXm1N61tuknFuwUuhJS0o-iJ0tY4Z6FQB1vWqT0qSlQvUPUCVS9QnQV2mYdTpgSACz7iEQ0J_wfmY217 |
| CODEN | ITGCBM |
| Cites_doi | 10.1201/9781315140223 10.1109/TCOMM.2022.3191681 10.1109/TWC.2017.2703901 10.1109/ICC.2018.8422799 10.1109/JSAC.2022.3233532 10.1109/NCC55593.2022.9806731 10.1109/TII.2018.2843365 10.1109/TCOMM.2016.2599530 10.1109/TWC.2017.2689772 10.1287/moor.1040.0129 10.1109/TMC.2022.3150432 10.1109/TVT.2020.2965159 10.1109/TAC.2021.3108121 10.1109/TWC.2020.2979136 10.1109/TVT.2018.2876804 10.1109/PCCC.2017.8280492 10.1109/JSAC.2016.2525418 10.1109/TSIPN.2020.2981266 10.1109/MNET.2017.1700082 10.1109/JIOT.2020.3033285 10.1016/j.comcom.2021.04.005 10.1109/JSAC.2019.2904363 10.1109/JSYST.2019.2921115 10.1109/ICC45041.2023.10278569 10.1287/moor.2022.0139 10.1109/LCOMM.2017.2696958 10.1109/GLOCOMW.2018.8644074 10.1287/opre.1050.0216 10.1109/TVT.2021.3133696 10.1109/JIOT.2019.2900550 10.1109/TGCN.2021.3138729 10.3390/su11082192 10.5772/66678 10.1145/2096149.2096153 10.1109/MCE.2016.2590118 10.1007/978-3-031-79995-2 10.1186/s13638-021-01941-3 10.1109/TVT.2020.2990482 10.1109/PIMRC50174.2021.9569647 10.1109/TWC.2017.2717986 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TGCN.2024.3487293 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2473-2400 |
| EndPage | 1353 |
| ExternalDocumentID | 10_1109_TGCN_2024_3487293 10737150 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Engineering Research Board, Department of Science and Technology, India grantid: SRG/2022/000808 funderid: 10.13039/501100001409 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c246t-9c5e1484d690ed98e88270b88cd57cce83a8f5f1caf0e3e4b07c8534cc1fd3343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554476200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-2400 |
| IngestDate | Sat Nov 01 14:15:08 EDT 2025 Sat Nov 29 07:39:36 EST 2025 Wed Aug 27 07:36:27 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-9c5e1484d690ed98e88270b88cd57cce83a8f5f1caf0e3e4b07c8534cc1fd3343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9955-9514 |
| PQID | 3246344881 |
| PQPubID | 4437214 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TGCN_2024_3487293 ieee_primary_10737150 proquest_journals_3246344881 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on green communications and networking |
| PublicationTitleAbbrev | TGCN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Mankowitz (ref21) 2020 ref1 ref17 ref39 (ref45) 2024 ref16 ref38 ref19 Chow (ref18) ref24 ref46 ref23 ref26 ref48 ref25 ref47 ref20 ref42 ref41 (ref43) 2018 ref22 ref44 ref28 ref27 Chitturi (ref7) 2021 ref29 ref9 (ref3) 2016 ref4 ref6 Puterman (ref12) 2014 ref5 ref40 Hu (ref8) 2015 |
| References_xml | – ident: ref11 doi: 10.1201/9781315140223 – ident: ref29 doi: 10.1109/TCOMM.2022.3191681 – ident: ref33 doi: 10.1109/TWC.2017.2703901 – volume-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming year: 2014 ident: ref12 – ident: ref22 doi: 10.1109/ICC.2018.8422799 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref18 article-title: Risk-sensitive and robust decision-making: A CVAR optimization approach – ident: ref38 doi: 10.1109/JSAC.2022.3233532 – ident: ref10 doi: 10.1109/NCC55593.2022.9806731 – ident: ref26 doi: 10.1109/TII.2018.2843365 – ident: ref44 doi: 10.1109/TCOMM.2016.2599530 – ident: ref13 doi: 10.1109/TWC.2017.2689772 – ident: ref16 doi: 10.1287/moor.1040.0129 – ident: ref36 doi: 10.1109/TMC.2022.3150432 – ident: ref39 doi: 10.1109/TVT.2020.2965159 – year: 2016 ident: ref3 article-title: Revised work item proposal: Enhancements of NB-IoT – year: 2020 ident: ref21 article-title: Robust constrained reinforcement learning for continuous control with model misspecification publication-title: arXiv:2010.10644 – volume-title: Physical Layer Procedures for Data, Version 15.3.0 year: 2018 ident: ref43 – ident: ref47 doi: 10.1109/TAC.2021.3108121 – ident: ref27 doi: 10.1109/TWC.2020.2979136 – ident: ref31 doi: 10.1109/TVT.2018.2876804 – ident: ref41 doi: 10.1109/PCCC.2017.8280492 – ident: ref2 doi: 10.1109/JSAC.2016.2525418 – ident: ref28 doi: 10.1109/TSIPN.2020.2981266 – ident: ref1 doi: 10.1109/MNET.2017.1700082 – ident: ref20 doi: 10.1109/JIOT.2020.3033285 – ident: ref32 doi: 10.1016/j.comcom.2021.04.005 – ident: ref14 doi: 10.1109/JSAC.2019.2904363 – ident: ref30 doi: 10.1109/JSYST.2019.2921115 – ident: ref25 doi: 10.1109/ICC45041.2023.10278569 – ident: ref17 doi: 10.1287/moor.2022.0139 – ident: ref42 doi: 10.1109/LCOMM.2017.2696958 – ident: ref23 doi: 10.1109/GLOCOMW.2018.8644074 – ident: ref15 doi: 10.1287/opre.1050.0216 – ident: ref34 doi: 10.1109/TVT.2021.3133696 – ident: ref4 doi: 10.1109/JIOT.2019.2900550 – volume-title: NR: Physical Layer Procedures for Control, Version 18.2.0 year: 2024 ident: ref45 – ident: ref46 doi: 10.1109/TGCN.2021.3138729 – ident: ref5 doi: 10.3390/su11082192 – ident: ref9 doi: 10.5772/66678 – ident: ref40 doi: 10.1145/2096149.2096153 – ident: ref6 doi: 10.1109/MCE.2016.2590118 – ident: ref37 doi: 10.1007/978-3-031-79995-2 – ident: ref24 doi: 10.1186/s13638-021-01941-3 – volume-title: Mobile edge computing-a key technology towards 5G year: 2015 ident: ref8 – ident: ref19 doi: 10.1109/TVT.2020.2990482 – ident: ref48 doi: 10.1109/PIMRC50174.2021.9569647 – volume-title: Enabling edge computing applications in 3GPP year: 2021 ident: ref7 – ident: ref35 doi: 10.1109/TWC.2017.2717986 |
| SSID | ssj0002951693 |
| Score | 2.3023572 |
| Snippet | With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1340 |
| SubjectTerms | 5G mobile communication Algorithms Complexity Constraints Delays Dynamic programming Edge computing Heuristic algorithms Internet of Things IoT Markov processes Mobile computing Mobile edge computing Power consumption Power demand Resource management robust MDP Robustness Scheduling algorithms Servers Task scheduling Wireless communication |
| Title | Robust & Low-Complexity Task Scheduling Algorithms for a Mobile Edge Computing System |
| URI | https://ieeexplore.ieee.org/document/10737150 https://www.proquest.com/docview/3246344881 |
| Volume | 9 |
| WOSCitedRecordID | wos001554476200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2473-2400 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951693 issn: 2473-2400 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAs4hCQR4QA1JKHDu1M1ZVC0OpELSoW-TYl4KABjUpiH-P7aSoCDGwZbhI0X05332-F0JniZCMENCeJER7jEjmyTDlXqp8bRwY16mr8n3o88FAjMfRbdWs7nphAMAVn0HTPrpcvs7U3F6VGQvnlDuGvso5L5u1vi9UgsimfGiVuSR-dDm86gwMAwxYk5qwPIjoD9_jlqn8OoGdW-lt__ODdtBWFT_idgn4LlqB6R7aXJoquI9Gd1kyzwt8jvvZh2cN3g69LD7xUObP-N6gpG35-QS3XybZ7Kl4fM2xCV2xxDdZYg4J3NUTwOW6BytWDjWvoVGvO-xce9X2BE8FrFV4kQrBcB2mDf8FHQkwsTT3EyGUDrlSIKgUaZgSJVMfKLDE58r4bqYUSTWljB6gtWk2hUOEGdUBU5BKBgEzUkJHYRBqo_GEM01adXSx0Gv8Vg7JiB258KPYghBbEOIKhDqqWUUuCZY6rKPGAoq4sqM8NuFeixoGKcjRH68do43AruR1ZV8NtFbM5nCC1tV78ZTPTt0v8gXGyrry |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ignrwLa7PHMSDUG0e3aRHEV-4u4iu4q2kyXRd1K1su4r_3iTtiiIevPUwhTJfJzNf5oXQXioVJwRMoAgxASeKByrKRJDp0FgHJkzmq3zvW6LTkQ8P8XXdrO57YQDAF5_BoXv0uXyT65G7KrMWLpjwDH0q4pySql3r60qFxi7pw-rcJQnjo-75ScdyQMoPmQ3Macx-eB-_TuXXGewdy9nCPz9pEc3XESQ-riBfQhMwWEZz3-YKrqC7mzwdFSXex638PXAm78Zelh-4q4onfGtxMq4AvYePn3v5sF8-vhTYBq9Y4Xae2mMCn5oe4GrhgxOrxpqvoruz0-7JRVDvTwg05c0yiHUElu1wYxkwmFiCjaZFmEqpTSS0BsmUzKKMaJWFwICnodDWe3OtSWYY42wNTQ7yAawjzJmhXEOmOFBupaSJIxoZq_FUcEOaDXQw1mvyWo3JSDy9COPEgZA4EJIahAZadYr8JljpsIG2xlAktSUViQ34msxySEk2_nhtF81cdNutpHXZudpEs9Qt6PVFYFtoshyOYBtN67eyXwx3_O_yCaxRvjk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+%26+Low-Complexity+Task+Scheduling+Algorithms+for+a+Mobile+Edge+Computing+System&rft.jtitle=IEEE+transactions+on+green+communications+and+networking&rft.au=Roy%2C+Arghyadip&rft.au=Biswas%2C+Nilanjan&rft.date=2025-09-01&rft.issn=2473-2400&rft.eissn=2473-2400&rft.volume=9&rft.issue=3&rft.spage=1340&rft.epage=1353&rft_id=info:doi/10.1109%2FTGCN.2024.3487293&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGCN_2024_3487293 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2400&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2400&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2400&client=summon |