Robust & Low-Complexity Task Scheduling Algorithms for a Mobile Edge Computing System

With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A Constrained Markov Decision Process (CMDP) formulation can capture the trade-off between computation time and power consumption. However, the optim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on green communications and networking Ročník 9; číslo 3; s. 1340 - 1353
Hlavní autori: Roy, Arghyadip, Biswas, Nilanjan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2473-2400, 2473-2400
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A Constrained Markov Decision Process (CMDP) formulation can capture the trade-off between computation time and power consumption. However, the optimal policy obtained by solving the CMDP problem may be sensitive to the changes in the task arrival rate. Moreover, there may be constraint violations. To address these issues, in this paper, we provide a Robust Return Robust CMDP (R3CMDP) formulation that minimizes the worst-case total discounted power consumption subject to a constraint on the worst-case total discounted deadline violations. Based on robust Dynamic Programming (DP) methods, we propose a task allocation algorithm that provably provides the optimal R3C policy. We also establish that the proposed algorithm incorporates robustness into the MDP framework with almost no additional complexity. Furthermore, we propose a low-complexity robust heuristic that can be implemented online, unlike the former algorithm. The proposed algorithms are implemented in a Network Simulator-3 (ns-3) based IoT simulation package. Numerical and simulation results establish that the proposed algorithms are more robust compared to the state-of-the-art algorithms in the face of varying task arrival rates.
AbstractList With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A Constrained Markov Decision Process (CMDP) formulation can capture the trade-off between computation time and power consumption. However, the optimal policy obtained by solving the CMDP problem may be sensitive to the changes in the task arrival rate. Moreover, there may be constraint violations. To address these issues, in this paper, we provide a Robust Return Robust CMDP (R3CMDP) formulation that minimizes the worst-case total discounted power consumption subject to a constraint on the worst-case total discounted deadline violations. Based on robust Dynamic Programming (DP) methods, we propose a task allocation algorithm that provably provides the optimal R3C policy. We also establish that the proposed algorithm incorporates robustness into the MDP framework with almost no additional complexity. Furthermore, we propose a low-complexity robust heuristic that can be implemented online, unlike the former algorithm. The proposed algorithms are implemented in a Network Simulator-3 (ns-3) based IoT simulation package. Numerical and simulation results establish that the proposed algorithms are more robust compared to the state-of-the-art algorithms in the face of varying task arrival rates.
Author Roy, Arghyadip
Biswas, Nilanjan
Author_xml – sequence: 1
  givenname: Arghyadip
  orcidid: 0000-0001-9955-9514
  surname: Roy
  fullname: Roy, Arghyadip
  email: arghyadip@iitg.ac.in
  organization: Mehta Family School of Data Science & Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati, India
– sequence: 2
  givenname: Nilanjan
  surname: Biswas
  fullname: Biswas, Nilanjan
  email: nbiswas.ece@nitdgp.ac.in
  organization: Electronics and Communication Engineering Department, National Institute of Technology Durgapur, Durgapur, India
BookMark eNpNkE1PwkAURScGExH5ASYuJjFxV5yv0umSNIgmqInAetJOX6HYdnBmGuXf2wYWrN5bnHtvcm7RoDENIHRPyYRSEj-vF8nHhBEmJlzIiMX8Cg2ZiHjABCGDi_8GjZ3bE0JYHNJpzIdo82Wy1nn8hJfmN0hMfajgr_RHvE7dN17pHeRtVTZbPKu2xpZ-VztcGItT_G6ysgI8z7eA-1zre2x1dB7qO3RdpJWD8fmO0OZlvk5eg-Xn4i2ZLQPNxNQHsQ6BCinyaUwgjyVIySKSSanzMNIaJE9lERZUpwUBDiIjkZYhF1rTIudc8BF6PPUerPlpwXm1N61tuknFuwUuhJS0o-iJ0tY4Z6FQB1vWqT0qSlQvUPUCVS9QnQV2mYdTpgSACz7iEQ0J_wfmY217
CODEN ITGCBM
Cites_doi 10.1201/9781315140223
10.1109/TCOMM.2022.3191681
10.1109/TWC.2017.2703901
10.1109/ICC.2018.8422799
10.1109/JSAC.2022.3233532
10.1109/NCC55593.2022.9806731
10.1109/TII.2018.2843365
10.1109/TCOMM.2016.2599530
10.1109/TWC.2017.2689772
10.1287/moor.1040.0129
10.1109/TMC.2022.3150432
10.1109/TVT.2020.2965159
10.1109/TAC.2021.3108121
10.1109/TWC.2020.2979136
10.1109/TVT.2018.2876804
10.1109/PCCC.2017.8280492
10.1109/JSAC.2016.2525418
10.1109/TSIPN.2020.2981266
10.1109/MNET.2017.1700082
10.1109/JIOT.2020.3033285
10.1016/j.comcom.2021.04.005
10.1109/JSAC.2019.2904363
10.1109/JSYST.2019.2921115
10.1109/ICC45041.2023.10278569
10.1287/moor.2022.0139
10.1109/LCOMM.2017.2696958
10.1109/GLOCOMW.2018.8644074
10.1287/opre.1050.0216
10.1109/TVT.2021.3133696
10.1109/JIOT.2019.2900550
10.1109/TGCN.2021.3138729
10.3390/su11082192
10.5772/66678
10.1145/2096149.2096153
10.1109/MCE.2016.2590118
10.1007/978-3-031-79995-2
10.1186/s13638-021-01941-3
10.1109/TVT.2020.2990482
10.1109/PIMRC50174.2021.9569647
10.1109/TWC.2017.2717986
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TGCN.2024.3487293
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2473-2400
EndPage 1353
ExternalDocumentID 10_1109_TGCN_2024_3487293
10737150
Genre orig-research
GrantInformation_xml – fundername: Science and Engineering Research Board, Department of Science and Technology, India
  grantid: SRG/2022/000808
  funderid: 10.13039/501100001409
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c246t-9c5e1484d690ed98e88270b88cd57cce83a8f5f1caf0e3e4b07c8534cc1fd3343
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554476200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-2400
IngestDate Sat Nov 01 14:15:08 EDT 2025
Sat Nov 29 07:39:36 EST 2025
Wed Aug 27 07:36:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-9c5e1484d690ed98e88270b88cd57cce83a8f5f1caf0e3e4b07c8534cc1fd3343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9955-9514
PQID 3246344881
PQPubID 4437214
PageCount 14
ParticipantIDs crossref_primary_10_1109_TGCN_2024_3487293
ieee_primary_10737150
proquest_journals_3246344881
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on green communications and networking
PublicationTitleAbbrev TGCN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Mankowitz (ref21) 2020
ref1
ref17
ref39
(ref45) 2024
ref16
ref38
ref19
Chow (ref18)
ref24
ref46
ref23
ref26
ref48
ref25
ref47
ref20
ref42
ref41
(ref43) 2018
ref22
ref44
ref28
ref27
Chitturi (ref7) 2021
ref29
ref9
(ref3) 2016
ref4
ref6
Puterman (ref12) 2014
ref5
ref40
Hu (ref8) 2015
References_xml – ident: ref11
  doi: 10.1201/9781315140223
– ident: ref29
  doi: 10.1109/TCOMM.2022.3191681
– ident: ref33
  doi: 10.1109/TWC.2017.2703901
– volume-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming
  year: 2014
  ident: ref12
– ident: ref22
  doi: 10.1109/ICC.2018.8422799
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref18
  article-title: Risk-sensitive and robust decision-making: A CVAR optimization approach
– ident: ref38
  doi: 10.1109/JSAC.2022.3233532
– ident: ref10
  doi: 10.1109/NCC55593.2022.9806731
– ident: ref26
  doi: 10.1109/TII.2018.2843365
– ident: ref44
  doi: 10.1109/TCOMM.2016.2599530
– ident: ref13
  doi: 10.1109/TWC.2017.2689772
– ident: ref16
  doi: 10.1287/moor.1040.0129
– ident: ref36
  doi: 10.1109/TMC.2022.3150432
– ident: ref39
  doi: 10.1109/TVT.2020.2965159
– year: 2016
  ident: ref3
  article-title: Revised work item proposal: Enhancements of NB-IoT
– year: 2020
  ident: ref21
  article-title: Robust constrained reinforcement learning for continuous control with model misspecification
  publication-title: arXiv:2010.10644
– volume-title: Physical Layer Procedures for Data, Version 15.3.0
  year: 2018
  ident: ref43
– ident: ref47
  doi: 10.1109/TAC.2021.3108121
– ident: ref27
  doi: 10.1109/TWC.2020.2979136
– ident: ref31
  doi: 10.1109/TVT.2018.2876804
– ident: ref41
  doi: 10.1109/PCCC.2017.8280492
– ident: ref2
  doi: 10.1109/JSAC.2016.2525418
– ident: ref28
  doi: 10.1109/TSIPN.2020.2981266
– ident: ref1
  doi: 10.1109/MNET.2017.1700082
– ident: ref20
  doi: 10.1109/JIOT.2020.3033285
– ident: ref32
  doi: 10.1016/j.comcom.2021.04.005
– ident: ref14
  doi: 10.1109/JSAC.2019.2904363
– ident: ref30
  doi: 10.1109/JSYST.2019.2921115
– ident: ref25
  doi: 10.1109/ICC45041.2023.10278569
– ident: ref17
  doi: 10.1287/moor.2022.0139
– ident: ref42
  doi: 10.1109/LCOMM.2017.2696958
– ident: ref23
  doi: 10.1109/GLOCOMW.2018.8644074
– ident: ref15
  doi: 10.1287/opre.1050.0216
– ident: ref34
  doi: 10.1109/TVT.2021.3133696
– ident: ref4
  doi: 10.1109/JIOT.2019.2900550
– volume-title: NR: Physical Layer Procedures for Control, Version 18.2.0
  year: 2024
  ident: ref45
– ident: ref46
  doi: 10.1109/TGCN.2021.3138729
– ident: ref5
  doi: 10.3390/su11082192
– ident: ref9
  doi: 10.5772/66678
– ident: ref40
  doi: 10.1145/2096149.2096153
– ident: ref6
  doi: 10.1109/MCE.2016.2590118
– ident: ref37
  doi: 10.1007/978-3-031-79995-2
– ident: ref24
  doi: 10.1186/s13638-021-01941-3
– volume-title: Mobile edge computing-a key technology towards 5G
  year: 2015
  ident: ref8
– ident: ref19
  doi: 10.1109/TVT.2020.2990482
– ident: ref48
  doi: 10.1109/PIMRC50174.2021.9569647
– volume-title: Enabling edge computing applications in 3GPP
  year: 2021
  ident: ref7
– ident: ref35
  doi: 10.1109/TWC.2017.2717986
SSID ssj0002951693
Score 2.3023572
Snippet With the advent of Mobile Edge Computing (MEC), the arriving tasks in an Internet of Things (IoT) network can be executed locally or at an MEC server. A...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1340
SubjectTerms 5G mobile communication
Algorithms
Complexity
Constraints
Delays
Dynamic programming
Edge computing
Heuristic algorithms
Internet of Things
IoT
Markov processes
Mobile computing
Mobile edge computing
Power consumption
Power demand
Resource management
robust MDP
Robustness
Scheduling algorithms
Servers
Task scheduling
Wireless communication
Title Robust & Low-Complexity Task Scheduling Algorithms for a Mobile Edge Computing System
URI https://ieeexplore.ieee.org/document/10737150
https://www.proquest.com/docview/3246344881
Volume 9
WOSCitedRecordID wos001554476200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2473-2400
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951693
  issn: 2473-2400
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAs4hCQR4QA1JKHDu1M1ZVC0OpELSoW-TYl4KABjUpiH-P7aSoCDGwZbhI0X05332-F0JniZCMENCeJER7jEjmyTDlXqp8bRwY16mr8n3o88FAjMfRbdWs7nphAMAVn0HTPrpcvs7U3F6VGQvnlDuGvso5L5u1vi9UgsimfGiVuSR-dDm86gwMAwxYk5qwPIjoD9_jlqn8OoGdW-lt__ODdtBWFT_idgn4LlqB6R7aXJoquI9Gd1kyzwt8jvvZh2cN3g69LD7xUObP-N6gpG35-QS3XybZ7Kl4fM2xCV2xxDdZYg4J3NUTwOW6BytWDjWvoVGvO-xce9X2BE8FrFV4kQrBcB2mDf8FHQkwsTT3EyGUDrlSIKgUaZgSJVMfKLDE58r4bqYUSTWljB6gtWk2hUOEGdUBU5BKBgEzUkJHYRBqo_GEM01adXSx0Gv8Vg7JiB258KPYghBbEOIKhDqqWUUuCZY6rKPGAoq4sqM8NuFeixoGKcjRH68do43AruR1ZV8NtFbM5nCC1tV78ZTPTt0v8gXGyrry
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ignrwLa7PHMSDUG0e3aRHEV-4u4iu4q2kyXRd1K1su4r_3iTtiiIevPUwhTJfJzNf5oXQXioVJwRMoAgxASeKByrKRJDp0FgHJkzmq3zvW6LTkQ8P8XXdrO57YQDAF5_BoXv0uXyT65G7KrMWLpjwDH0q4pySql3r60qFxi7pw-rcJQnjo-75ScdyQMoPmQ3Macx-eB-_TuXXGewdy9nCPz9pEc3XESQ-riBfQhMwWEZz3-YKrqC7mzwdFSXex638PXAm78Zelh-4q4onfGtxMq4AvYePn3v5sF8-vhTYBq9Y4Xae2mMCn5oe4GrhgxOrxpqvoruz0-7JRVDvTwg05c0yiHUElu1wYxkwmFiCjaZFmEqpTSS0BsmUzKKMaJWFwICnodDWe3OtSWYY42wNTQ7yAawjzJmhXEOmOFBupaSJIxoZq_FUcEOaDXQw1mvyWo3JSDy9COPEgZA4EJIahAZadYr8JljpsIG2xlAktSUViQ34msxySEk2_nhtF81cdNutpHXZudpEs9Qt6PVFYFtoshyOYBtN67eyXwx3_O_yCaxRvjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+%26+Low-Complexity+Task+Scheduling+Algorithms+for+a+Mobile+Edge+Computing+System&rft.jtitle=IEEE+transactions+on+green+communications+and+networking&rft.au=Roy%2C+Arghyadip&rft.au=Biswas%2C+Nilanjan&rft.date=2025-09-01&rft.issn=2473-2400&rft.eissn=2473-2400&rft.volume=9&rft.issue=3&rft.spage=1340&rft.epage=1353&rft_id=info:doi/10.1109%2FTGCN.2024.3487293&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGCN_2024_3487293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2400&client=summon