LSCMNet: A Lightweight Segmentation Network Based on Co-Occurring Matrix for Seismic Image

Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic images. However, traditional texture feature extraction methods are computationally intensive and cannot be updated through back-propagation. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters Jg. 22; S. 1 - 5
Hauptverfasser: Fan, Linqian, Lu, Wenkai, Wang, Yonghao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-598X, 1558-0571
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic images. However, traditional texture feature extraction methods are computationally intensive and cannot be updated through back-propagation. To address these challenges, we propose a model named lightweight segmentation network based on co-occurring matrix (LSCMNet). The overall architecture of LSCMNet employs an asymmetric encoder-decoder structure. The encoder mainly consists of a lightweight bottleneck that integrates the parametric co-occurrence matrix (CM) model based on the convolutional neural network (CNN) for segmentation (S-PCMCNN) module, along with channel shuffle and split for feature fusion, enhancing the model representational capacity. The pyramid decoder encompasses a spatial attention mechanism. This design significantly reduces the parameters while maintaining accuracy in seismic image segmentation. In the application of igneous rocks, an ablation experiment was conducted to validate the effectiveness of the S-PCMCNN module. Moreover, compared with other classical segmentation models, LSCMNet demonstrates superior segmentation accuracy in few-shot scenarios while having fewer parameters and floating point operations (FLOPs).
AbstractList Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic images. However, traditional texture feature extraction methods are computationally intensive and cannot be updated through back-propagation. To address these challenges, we propose a model named lightweight segmentation network based on co-occurring matrix (LSCMNet). The overall architecture of LSCMNet employs an asymmetric encoder–decoder structure. The encoder mainly consists of a lightweight bottleneck that integrates the parametric co-occurrence matrix (CM) model based on the convolutional neural network (CNN) for segmentation (S-PCMCNN) module, along with channel shuffle and split for feature fusion, enhancing the model representational capacity. The pyramid decoder encompasses a spatial attention mechanism. This design significantly reduces the parameters while maintaining accuracy in seismic image segmentation. In the application of igneous rocks, an ablation experiment was conducted to validate the effectiveness of the S-PCMCNN module. Moreover, compared with other classical segmentation models, LSCMNet demonstrates superior segmentation accuracy in few-shot scenarios while having fewer parameters and floating point operations (FLOPs).
Author Fan, Linqian
Wang, Yonghao
Lu, Wenkai
Author_xml – sequence: 1
  givenname: Linqian
  orcidid: 0009-0005-3574-2025
  surname: Fan
  fullname: Fan, Linqian
  email: flq24@mails.tsinghua.edu.cn
  organization: Department of Automation, State Key Laboratory of Intelligent Technology and Systems, Institute for Artificial Intelligence (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 2
  givenname: Wenkai
  orcidid: 0000-0003-0249-2144
  surname: Lu
  fullname: Lu, Wenkai
  email: lwkmf@mail.tsinghua.edu.cn
  organization: Department of Automation, State Key Laboratory of Intelligent Technology and Systems, Institute for Artificial Intelligence (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
– sequence: 3
  givenname: Yonghao
  orcidid: 0000-0001-5894-5099
  surname: Wang
  fullname: Wang, Yonghao
  email: yonghao-20@mails.tsinghua.edu.cn
  organization: Department of Automation, State Key Laboratory of Intelligent Technology and Systems, Institute for Artificial Intelligence (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
BookMark eNpNkE1Lw0AQhhepYFv9AYKHBc-p-5lsvNWgtZBasAriJWw2k7jVZusmpfrvTWgPXmaGmfedGZ4RGtSuBoQuKZlQSuKbdPa8mjDC5IRLpggPT9CQSqkCIiM66GshAxmrtzM0apo1IUwoFQ3Re7pKFk_Q3uIpTm310e6hj3gF1QbqVrfW1bib753_xHe6gQJ3jcQFS2N23tu6wgvdevuDS-c7l2021uD5Rldwjk5L_dXAxTGP0evD_UvyGKTL2TyZpoFhImyD2LDuuajQMQcZFySXpuQFFFSqXOlcaKpyAkKFBZNlFJs4EpKHISOCGily4GN0fdi79e57B02brd3O193JjNOQ8ogyEncqelAZ75rGQ5ltvd1o_5tRkvUIsx5h1iPMjgg7z9XBYwHgn17xUAnO_wD4i23X
CODEN IGRSBY
Cites_doi 10.1109/CVPR.2018.00716
10.1109/TGRS.2023.3288737
10.1109/CVPR.2016.308
10.1038/s41598-023-31205-7
10.1109/TSMC.1973.4309314
10.1109/ICIP.2019.8803154
10.2352/ISSN.2470-1173.2017.7.MWSF-325
10.1109/CVPR.2016.90
10.48550/arXiv.1802.02611
10.1109/TGRS.2023.3288668
10.48550/arXiv.1511.07122
10.1007/978-3-319-24574-4_28
10.1109/TGRS.2022.3172997
10.1109/TPAMI.2016.2644615
10.1109/LGRS.2022.3193567
10.1109/TIFS.2012.2190402
10.1109/TGRS.2023.3299378
10.1109/TCSVT.2022.3216905
10.1190/INT-2018-0076.1
10.1109/CVPR.2017.106
10.1109/CVPR.2018.00745
10.1109/JSTARS.2024.3381454
10.1109/LGRS.2023.3287320
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2025.3528036
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2025_3528036
10836843
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFA0702501
  funderid: 10.13039/501100001809
– fundername: Major Research Project on Scientific Instrument Development, China National Natural Science Foundation (Recommended via Department)
  grantid: 42327901
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-9c21547da93e59d0b5cf3ded158b8ab4a18b0e486d25f79c97453662041c54be3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410280000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 10:07:54 EDT 2025
Sat Nov 29 05:54:26 EST 2025
Wed Aug 27 01:53:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-9c21547da93e59d0b5cf3ded158b8ab4a18b0e486d25f79c97453662041c54be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0249-2144
0000-0001-5894-5099
0009-0005-3574-2025
PQID 3161371209
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_10836843
proquest_journals_3161371209
crossref_primary_10_1109_LGRS_2025_3528036
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Paszke (ref13) 2016
ref24
ref23
ref25
ref20
ref22
ref21
Kusnadi (ref8)
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1109/CVPR.2018.00716
– ident: ref1
  doi: 10.1109/TGRS.2023.3288737
– ident: ref12
  doi: 10.1109/CVPR.2016.308
– ident: ref9
  doi: 10.1038/s41598-023-31205-7
– ident: ref7
  doi: 10.1109/TSMC.1973.4309314
– ident: ref17
  doi: 10.1109/ICIP.2019.8803154
– ident: ref15
  doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-325
– ident: ref16
  doi: 10.1109/CVPR.2016.90
– ident: ref24
  doi: 10.48550/arXiv.1802.02611
– start-page: 1
  volume-title: Proc. Int. Conf. Smart Comput. Appl. (ICSCA)
  ident: ref8
  article-title: Face recognition accuracy improving using gray level co-occurrence matrix selection feature algorithm
– ident: ref2
  doi: 10.1109/TGRS.2023.3288668
– ident: ref18
  doi: 10.48550/arXiv.1511.07122
– volume-title: arXiv:1606.02147
  year: 2016
  ident: ref13
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
– ident: ref22
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref4
  doi: 10.1109/TGRS.2022.3172997
– ident: ref23
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref25
  doi: 10.1109/LGRS.2022.3193567
– ident: ref10
  doi: 10.1109/TIFS.2012.2190402
– ident: ref3
  doi: 10.1109/TGRS.2023.3299378
– ident: ref11
  doi: 10.1109/TCSVT.2022.3216905
– ident: ref5
  doi: 10.1190/INT-2018-0076.1
– ident: ref19
  doi: 10.1109/CVPR.2017.106
– ident: ref20
  doi: 10.1109/CVPR.2018.00745
– ident: ref21
  doi: 10.1109/JSTARS.2024.3381454
– ident: ref6
  doi: 10.1109/LGRS.2023.3287320
SSID ssj0024887
Score 2.4093437
Snippet Seismic image segmentation is important in geological interpretation. In recent years, numerous studies have leveraged texture features to analyze seismic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Accuracy
Artificial neural networks
Asymmetric encoder-decoder
Back propagation networks
co-occurring matrix
Coders
Computer architecture
Convolution
Decoding
Feature extraction
Floating point arithmetic
Geoscience and remote sensing
Igneous rocks
Image processing
Image segmentation
Kernel
lightweight network
Modules
Neural networks
Parameters
Salt
Seismic activity
seismic segmentation
Surface treatment
Texture
Title LSCMNet: A Lightweight Segmentation Network Based on Co-Occurring Matrix for Seismic Image
URI https://ieeexplore.ieee.org/document/10836843
https://www.proquest.com/docview/3161371209
Volume 22
WOSCitedRecordID wos001410280000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RotGLPxAjiqYHTybDwdau9YZE0WQQI2qIl2VrH8oBMDBU_nvbbgQT48HbsqzL0m-v70f7vg_gjMqBLxiPHVc2dILCmHKEDhscLnw-MFIPriXSfg6Dbpf3--I-b1a3vTCIaA-fYc1c2r18NZFzUyrTFs49xn2vAIUgYFmz1opYj1s1PBMSOFTwfr6FWXfFRdh-6OlUsEFrhsvEtXTMKydkVVV-LcXWv9zs_PPLdmE7DyRJM0N-D9ZwXILNXNP8bVGCjbYV7V3sw0vYa3W6mF6SJglNMv5p66Gkh6-jvPVoTLrZeXBypd2aIvpGa-IYCuKpKfyRjmHy_yI6wtWjhrPRUJK7kV6KyvB0c_3YunVyTQVHNnyWOkJDQv1AxcJDKpSbaLA8hapOecLjxI_rPHHR50w16CAQUqcb1GOGtL4uqZ-gdwDF8WSMh0Ak084eZZxwnVMhQzFgJiBTAQpteRhX4Hw5ydF7Rp0R2ZTDFZFBJDKIRDkiFSibWf3xYDahFagucYly65pFng5TvcB0_R79MewYtszbs1pJFYrpdI4nsC4_0uFsemp_nG-OhL4u
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCi6sRZTVB05IgTSxHZtbqdhEGiEKqOISJfYUemiLurD8PbYTBBLiwC2KYiXyy3gWe94DOGCqQyUXmeerwCQonGtPmrDBE5KKjpV68B2R9kMcJYlot-VN2azuemEQ0R0-wyN76fby9UBNbKnMWLgIuaDhNMwySgO_aNf6ptYTTg_PBgUek6JdbmLWfHkcX9y2TDIYsCPLZuI7QuZvN-R0VX4txs7DnC__89tWYKkMJUm9wH4VprC_BgulqvnzxxrMXzjZ3o91eIxbjWaC4xNSJ7FNx99cRZS08KlXNh_1SVKcCCenxrFpYm40Bp4lIR7a0h9pWi7_d2JiXDOqO-p1FbnqmcWoAvfnZ3eNS69UVfBUQPnYkwYURiOdyRCZ1H5u4Ao16hoTuchymtVE7iMVXAesE0llEg4WcktbX1OM5hhuwEx_0MdNIIobd48qy4XJqpCj7HAbkukIpbE9zKpw-DXJ6UtBnpG6pMOXqUUktYikJSJVqNhZ_fFgMaFV2PnCJS3ta5SGJlANI9v3u_XHsH1YuLxrxml8lVxvw6J9U1E52YGZ8XCCuzCnXsfd0XDP_USfoLfBdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSCMNet%3A+A+Lightweight+Segmentation+Network+Based+on+Co-Occurring+Matrix+for+Seismic+Image&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Fan%2C+Linqian&rft.au=Lu%2C+Wenkai&rft.au=Wang%2C+Yonghao&rft.date=2025&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=22&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2025.3528036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2025_3528036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon