Representation of Multirelations of Geographic Scenes Based on Hyperbolic Space
The recognition of complex geographic scenes requires to simultaneously describe different kinds of relations such as hyponymy and spatial relations among multiple-scale categories. The former is hierarchical structure, and the latter is called eigen structure. Current researches focus on representi...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 13 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The recognition of complex geographic scenes requires to simultaneously describe different kinds of relations such as hyponymy and spatial relations among multiple-scale categories. The former is hierarchical structure, and the latter is called eigen structure. Current researches focus on representing these relations in Euclidean space. However, the key characteristic of the Euclidean spaces is that it expands polynomially with respect to the radius, which makes it difficult to describe both the hierarchical and eigen structure within finite computable dimensions simultaneously. To address the above issues, a hyperbolic embedding model for representing complex geographic scenes (HEMR) is first proposed. First, the visual features of remote sensing objects are extracted through a deep neural network in Euclidean space and mapped onto the n-dimensional Poincare ball in hyperbolic space by an exponential projection. Second, a two-stage contrastive learning mechanism based on Möbius transformation is designed, which uses the property of exponential expansion to obtain the ability to represent different kinds of relations. Finally, a new quaternion loss is designed to describe the relations between feature categories in remote sensing scenarios by hyperbolic distance. The experiments indicate that our model can leverage the characteristic of spatial exponential growth with the radius in hyperbolic space, simultaneously describing the hierarchical and eigen structures of complex remote sensing scenes in finite dimensions. This provides support for downstream tasks such as semantic segmentation of remote sensing, knowledge graph representation, and link prediction. |
|---|---|
| AbstractList | The recognition of complex geographic scenes requires to simultaneously describe different kinds of relations such as hyponymy and spatial relations among multiple-scale categories. The former is hierarchical structure, and the latter is called eigen structure. Current researches focus on representing these relations in Euclidean space. However, the key characteristic of the Euclidean spaces is that it expands polynomially with respect to the radius, which makes it difficult to describe both the hierarchical and eigen structure within finite computable dimensions simultaneously. To address the above issues, a hyperbolic embedding model for representing complex geographic scenes (HEMR) is first proposed. First, the visual features of remote sensing objects are extracted through a deep neural network in Euclidean space and mapped onto the n-dimensional Poincare ball in hyperbolic space by an exponential projection. Second, a two-stage contrastive learning mechanism based on Möbius transformation is designed, which uses the property of exponential expansion to obtain the ability to represent different kinds of relations. Finally, a new quaternion loss is designed to describe the relations between feature categories in remote sensing scenarios by hyperbolic distance. The experiments indicate that our model can leverage the characteristic of spatial exponential growth with the radius in hyperbolic space, simultaneously describing the hierarchical and eigen structures of complex remote sensing scenes in finite dimensions. This provides support for downstream tasks such as semantic segmentation of remote sensing, knowledge graph representation, and link prediction. |
| Author | Cui, Wei Zhao, Huilin Tian, Yueling Hao, Yuanjie Wang, Jin Xu, Xing Chen, Jiale Feng, Zhanyun Xia, Cong |
| Author_xml | – sequence: 1 givenname: Wei surname: Cui fullname: Cui, Wei email: cuiwei@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 2 givenname: Xing orcidid: 0000-0002-2310-4385 surname: Xu fullname: Xu, Xing email: xuxing@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Jiale surname: Chen fullname: Chen, Jiale email: chenjl07@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 4 givenname: Zhanyun surname: Feng fullname: Feng, Zhanyun email: 276762@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 5 givenname: Huilin orcidid: 0000-0002-2843-1123 surname: Zhao fullname: Zhao, Huilin email: zhaohl2016@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 6 givenname: Yuanjie surname: Hao fullname: Hao, Yuanjie email: haoyuanjie@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 7 givenname: Yueling surname: Tian fullname: Tian, Yueling email: tianyueling@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 8 givenname: Jin surname: Wang fullname: Wang, Jin email: 0121608900228@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China – sequence: 9 givenname: Cong surname: Xia fullname: Xia, Cong email: 265107@whut.edu.cn organization: School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China |
| BookMark | eNpNkE1LAzEQhoNUsK3-AMHDguetyeb7qEVboVJo6zlksxPdUjdrsj3037trPXiaYeZ5Z-CZoFETGkDoluAZIVg_7Bab7azABZtRhqVi9AKNCecqx4KxERpjokVeKF1coUlKe4wJ40SO0XoDbYQETWe7OjRZ8Nnb8dDVEQ6_gzRMFhA-om0_a5dtHTSQsieboMp6fnlqIZbhMKxa6-AaXXp7SHDzV6fo_eV5N1_mq_Xidf64yl3BRJcr62mpASqvnVLUl7LvS6LKqvBcKK0cFBUjQnvPieUcWyuJJN55LAUtKzpF9-e7bQzfR0id2YdjbPqXhmIhNGGS8Z4iZ8rFkFIEb9pYf9l4MgSbwZsZvJnBm_nz1mfuzpkaAP7xnFEsGf0Br-lsYA |
| CODEN | IGRSD2 |
| Cites_doi | 10.3390/rs13071312 10.1016/j.isprsjprs.2022.01.009 10.1609/aaai.v28i1.8870 10.48550/ARXIV.1609.02907 10.1145/3583780.3614979 10.1145/2623330.2623732 10.1016/j.rse.2022.112916 10.3390/rs15040880 10.1109/TAC.2013.2254619 10.3390/rs11010083 10.3390/ijgi10010032 10.1109/CSPC.2017.8305844 10.1016/j.neucom.2022.04.026 10.1016/j.ins.2022.07.060 10.1609/aaai.v29i1.9491 10.1109/MSP.2017.2693418 10.1016/j.inffus.2023.101909 10.1145/2939672.2939754 10.1109/tbdata.2021.3081431 10.1109/CVPR.2015.7298682 10.3390/rs9030243 10.1109/TGRS.2020.3016020 10.3390/rs14194872 10.18653/v1/2020.acl-main.617 10.1109/TGRS.2021.3073269 10.3390/rs14051161 10.1016/j.isprsjprs.2021.03.016 10.3390/rs13214201 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3407843 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TGRS_2024_3407843 10543074 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFC0810605 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c246t-8af3b9eedf9c883fb7eedb18bd2f56898ce2d4169ff51a550aa7171fcf0763bd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246585400047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:28:28 EDT 2025 Sat Nov 29 03:32:36 EST 2025 Wed Aug 27 02:15:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-8af3b9eedf9c883fb7eedb18bd2f56898ce2d4169ff51a550aa7171fcf0763bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2310-4385 0000-0002-2843-1123 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10543074 |
| PQID | 3066914745 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10543074 crossref_primary_10_1109_TGRS_2024_3407843 proquest_journals_3066914745 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Hamilton (ref7); 30 ref12 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Dosovitskiy (ref36) 2020 ref1 ref39 ref38 Hian Lee (ref24) 2023 ref18 Deng (ref23) 2023 Nickel (ref17) Yang (ref20) 2022 Velickovic (ref6) 2017; 1050 Gu (ref35) ref25 ref22 ref21 ref28 ref27 Balazevic (ref16); 32 Nickel (ref19); 80 ref29 ref8 ref9 Bai (ref26) 2021 ref4 ref3 Ganea (ref34) ref5 ref40 McInnes (ref41) 2018 |
| References_xml | – ident: ref11 doi: 10.3390/rs13071312 – ident: ref13 doi: 10.1016/j.isprsjprs.2022.01.009 – ident: ref1 doi: 10.1609/aaai.v28i1.8870 – ident: ref5 doi: 10.48550/ARXIV.1609.02907 – start-page: 6341 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref17 article-title: Poincaré embeddings for learning hierarchical representations – year: 2020 ident: ref36 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – volume: 30 start-page: 1025 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref7 article-title: Inductive representation learning on large graphs – volume: 80 start-page: 3776 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref19 article-title: Learning continuous hierarchies in the Lorentz model of hyperbolic geometry – ident: ref25 doi: 10.1145/3583780.3614979 – ident: ref3 doi: 10.1145/2623330.2623732 – ident: ref9 doi: 10.1016/j.rse.2022.112916 – ident: ref31 doi: 10.3390/rs15040880 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref35 article-title: Learning mixed-curvature representations in product spaces – year: 2023 ident: ref24 article-title: Node-specific space selection via localized geometric hyperbolicity in graph neural networks publication-title: arXiv:2303.01724 – ident: ref39 doi: 10.1109/TAC.2013.2254619 – start-page: 1646 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref34 article-title: Hyperbolic entailment cones for learning hierarchical embeddings – ident: ref14 doi: 10.3390/rs11010083 – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref16 article-title: Multi-relational Poincaré graph embeddings – year: 2021 ident: ref26 article-title: Modeling heterogeneous hierarchies with relation-specific hyperbolic cones publication-title: arXiv:2110.14923 – year: 2022 ident: ref20 article-title: Hyperbolic curvature graph neural network publication-title: arXiv:2212.01793 – year: 2023 ident: ref23 article-title: FMGNN: Fused manifold graph neural network publication-title: arXiv:2304.01081 – ident: ref32 doi: 10.3390/ijgi10010032 – ident: ref40 doi: 10.1109/CSPC.2017.8305844 – ident: ref21 doi: 10.1016/j.neucom.2022.04.026 – ident: ref22 doi: 10.1016/j.ins.2022.07.060 – ident: ref2 doi: 10.1609/aaai.v29i1.9491 – ident: ref15 doi: 10.1109/MSP.2017.2693418 – ident: ref10 doi: 10.1016/j.inffus.2023.101909 – ident: ref4 doi: 10.1145/2939672.2939754 – ident: ref18 doi: 10.1109/tbdata.2021.3081431 – ident: ref38 doi: 10.1109/CVPR.2015.7298682 – ident: ref37 doi: 10.3390/rs9030243 – year: 2018 ident: ref41 article-title: UMAP: Uniform manifold approximation and projection for dimension reduction publication-title: arXiv:1802.03426 – ident: ref28 doi: 10.1109/TGRS.2020.3016020 – ident: ref12 doi: 10.3390/rs14194872 – ident: ref27 doi: 10.18653/v1/2020.acl-main.617 – ident: ref29 doi: 10.1109/TGRS.2021.3073269 – ident: ref30 doi: 10.3390/rs14051161 – volume: 1050 start-page: 48550 issue: 20 year: 2017 ident: ref6 article-title: Graph attention networks publication-title: Stat – ident: ref8 doi: 10.1016/j.isprsjprs.2021.03.016 – ident: ref33 doi: 10.3390/rs13214201 |
| SSID | ssj0014517 |
| Score | 2.452944 |
| Snippet | The recognition of complex geographic scenes requires to simultaneously describe different kinds of relations such as hyponymy and spatial relations among... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Computational modeling Embedding Euclidean geometry Euclidean space Feature extraction Geographic scenes Geometric transformation Graph representations Graphical representations Hyperbolic coordinates hyperbolic space Knowledge graphs Knowledge representation Machine learning multirelations Neural networks Object recognition Quaternions Remote sensing Semantic segmentation Semantics Vectors Visualization |
| Title | Representation of Multirelations of Geographic Scenes Based on Hyperbolic Space |
| URI | https://ieeexplore.ieee.org/document/10543074 https://www.proquest.com/docview/3066914745 |
| Volume | 62 |
| WOSCitedRecordID | wos001246585400047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RCiQYeJQiCgVlYEJKiRM7iUdAlE4FtUXqFsUv0aVFacvv5-y4qAgxsFmRnUR3vjt_vhfATZyWOmGShZKJLKRZYkIexzpUkYwUkSiaUrhmE9lwmE-n_NUnq7tcGK21Cz7TPTt0vny1kGt7VYYSzijuSdqARpaldbLWt8uAMuJzo9MQUUTsXZgk4neT59EYoWBMe4l1W9HkhxFyXVV-qWJnX_pH__yzYzj0B8ngvub8CezoeQsOtsoLtmDPhXfK5Sm8jFzAq88zmgcLE7jM22oTCmef-H7o7zMZjKVVgcEDmjgV4PwBotVK2BLCwRhBtm7DW_9p8jgIfSuFUMY0XYV5aRLB0R4aLvM8MSLDsSC5ULFhac5zqWOFZzNuDCMlopayRJxHjDQRKiChkjNozhdzfQ6BIbKkHIEVWn5qCM8RsSlLdUEkF4p14HZD2-KjrphROKQR8cIyorCMKDwjOtC2xNyaWNOxA90NOwovVMsC0U2KH84ou_hj2SXs27fXVyRdaK6qtb6CXfm5mi2ra7dfvgBPqL4S |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xFDDwLKJQIAMTUiB27CQeAVGKgIJokdii-CVYWtQWfj9nx0UgxMBmRbYc3fnu_PleAEc0q0zKFY8Vl3nM8tTGglIT60QlmigUTSV9s4m82y2en8VDSFb3uTDGGB98Zk7c0Pvy9VC9u6cylHDO8EyyWZjnjNGkTtf6chowTkJ2dBYjjqDBiUkScdq_euwhGKTsJHWOK5b-MEO-r8ovZewtTHvtn_-2DqvhKhmd1bzfgBkz2ISVbwUGN2HRB3iq8RbcP_qQ15BpNIiGNvK5t6NpMJz7Ejqiv7yqqKecEozO0cjpCOd3EK-OpCsiHPUQZpsGPLUv-xedODRTiBVl2SQuKptKgRbRClUUqZU5jiUppKaWZ4UolKEab2fCWk4qxC1VhUiPWGUTVEFSp9swNxgOzA5ElqiKCYRWaPuZJaJAzKYd1SVRQmrehOMpbcu3umZG6bFGIkrHiNIxogyMaELDEfPbxJqOTWhN2VEGsRqXiG8y3DhnfPePZYew1Onf3Za3192bPVh2O9UPJi2Ym4zezT4sqI_J63h04M_OJ1-OwVk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+of+Multirelations+of+Geographic+Scenes+Based+on+Hyperbolic+Space&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Cui%2C+Wei&rft.au=Xu%2C+Xing&rft.au=Chen%2C+Jiale&rft.au=Feng%2C+Zhanyun&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3407843&rft.externalDocID=10543074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |