Efficient Convolutional Sparse Coding Based on Penalized Weighted Least Squares for Seismic Data Denoising
Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods based on patching schemes in that it can directly process the whole data and capture correlations between local neighborhoods. However, the le...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods based on patching schemes in that it can directly process the whole data and capture correlations between local neighborhoods. However, the learned filters by CSC may contain inaccurate features resulting in the structure loss of data, and solving CSC problems has a heavy computational burden. To optimize these problems, we investigate the denoising accuracy of the CSC model and introduce CSC as a regularization term into the penalized weighted least-squares (PWLSs) framework. In particular, we design an effective method to solve the problem of updating sparse feature maps, which improves computational efficiency. Combining the above two points, we propose an efficient CSC (ECSC) model for random noise attenuation of seismic data. The numerical experiments on synthetic data and field data demonstrate that ECSC performs better than the K-singular value decomposition (K-SVD) algorithm, sequential generalized K-means (SGK) algorithm, and fast and flexible CSC (FF-CSC) in seismic data denoising performance and computational efficiency. |
|---|---|
| AbstractList | Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods based on patching schemes in that it can directly process the whole data and capture correlations between local neighborhoods. However, the learned filters by CSC may contain inaccurate features resulting in the structure loss of data, and solving CSC problems has a heavy computational burden. To optimize these problems, we investigate the denoising accuracy of the CSC model and introduce CSC as a regularization term into the penalized weighted least-squares (PWLSs) framework. In particular, we design an effective method to solve the problem of updating sparse feature maps, which improves computational efficiency. Combining the above two points, we propose an efficient CSC (ECSC) model for random noise attenuation of seismic data. The numerical experiments on synthetic data and field data demonstrate that ECSC performs better than the K-singular value decomposition (K-SVD) algorithm, sequential generalized K-means (SGK) algorithm, and fast and flexible CSC (FF-CSC) in seismic data denoising performance and computational efficiency. |
| Author | Wu, Juan Ma, Zhaoyang Bai, Min Yang, Bo Zhou, Zixiang Cui, Yang Zeng, Yang |
| Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0002-2692-5402 surname: Bai fullname: Bai, Min email: baimin@yangtzeu.edu.cn organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China – sequence: 2 givenname: Bo orcidid: 0009-0007-1671-8251 surname: Yang fullname: Yang, Bo email: ycl2980738443@163.com organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China – sequence: 3 givenname: Juan orcidid: 0000-0002-5064-1987 surname: Wu fullname: Wu, Juan organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China – sequence: 4 givenname: Zixiang orcidid: 0000-0002-6875-9422 surname: Zhou fullname: Zhou, Zixiang organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China – sequence: 5 givenname: Yang orcidid: 0009-0008-4685-9458 surname: Cui fullname: Cui, Yang organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China – sequence: 6 givenname: Zhaoyang surname: Ma fullname: Ma, Zhaoyang organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China – sequence: 7 givenname: Yang surname: Zeng fullname: Zeng, Yang organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China |
| BookMark | eNpNUE1PAjEUbAwmAvoDTDw08bzY1-1uu0cFRBMSjZB4bEq3iyXQQrtror_eEjj4Lu9rZjKZAeo57wxCt0BGAKR6WM4-FiNKKBvlrKgE5xeoD0UhMlIy1kN9AlWZUVHRKzSIcUMIsAJ4H22mTWO1Na7FY---_bZrrXdqixd7FaJJx9q6NX5S0dTYO_xu0tP-puXT2PVXm4a5UbHFi0Ongom48QEvjI07q_FEtQpPjPM2JpFrdNmobTQ35z5Ey-fpcvySzd9mr-PHeaYpK9tMsJoDFbowgtJK62ZlUhEqygpYA2KlOGO1UGylqdE5F4rXrNQi1wJAqXyI7k-y--APnYmt3PguJNdR5gC0opwTSCg4oXTwMQbTyH2wOxV-JBB5TFQeE5XHROU50cS5O3FsMvQPXwpCSp7_AR9mdOw |
| CODEN | IGRSD2 |
| Cites_doi | 10.1109/MCSE.2006.49 10.1109/CVPR.2013.57 10.1109/TCI.2018.2840334 10.5555/3104322.3104374 10.1561/2200000016 10.1190/1.3380591 10.1190/geo2014-0396.1 10.1109/ICCV.2017.459 10.1190/geo2014-0525.1 10.1190/geo2015-0598.1 10.1109/TSP.2006.881199 10.1109/TGRS.2020.3039738 10.1109/TGRS.2023.3286791 10.1109/ICCV.2015.212 10.1109/LSP.2022.3175096 10.1109/TGRS.2018.2870087 10.1038/381607a0 10.1109/TIP.2015.2495260 10.1190/geo2013-0382.1 10.1109/TMI.2019.2906853 10.1109/TGRS.2022.3164460 10.1190/geo2014-0227.1 10.1111/cgf.12819 10.1109/TGRS.2021.3107541 10.1109/ICASSP.2014.6854992 10.1109/ICCV.2017.566 10.1109/ICASSP.2015.7178176 10.1190/geo2019-0746.1 10.1109/TCI.2022.3175309 10.1190/geo2017-0310.1 10.1023/A:1004603514434 10.1190/geo2013-0168.1 10.1109/TGRS.2023.3303449 10.1093/gji/ggw492 10.1109/CVPR.2010.5539957 10.1109/TGRS.2018.2872416 10.1016/j.jappgeo.2021.104446 10.1109/CVPR.2015.7299149 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3459877 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TGRS_2024_3459877 10680067 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42174159; 41904110 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hubei Province grantid: 2021CFB498 funderid: 10.13039/501100003819 – fundername: Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education grantid: KPI2021-01 funderid: 10.13039/501100015917 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c246t-84d7128c5e8229ccfbeeee0286914f18ba744d8a4bc2ec378a7d46c83c811aa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329087800051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:00:50 EDT 2025 Sat Nov 29 03:32:41 EST 2025 Wed Aug 27 02:18:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-84d7128c5e8229ccfbeeee0286914f18ba744d8a4bc2ec378a7d46c83c811aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-1671-8251 0000-0002-2692-5402 0000-0002-5064-1987 0000-0002-6875-9422 0009-0008-4685-9458 |
| PQID | 3112927701 |
| PQPubID | 85465 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10680067 proquest_journals_3112927701 crossref_primary_10_1109_TGRS_2024_3459877 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 Jas (ref21) ref2 ref1 ref17 Xiong (ref18) 2019 ref39 ref16 ref38 ref19 Bristow (ref29) 2014 Kong (ref30) 2014 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref43 Peter (ref22) ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref3 doi: 10.1109/MCSE.2006.49 – ident: ref28 doi: 10.1109/CVPR.2013.57 – ident: ref39 doi: 10.1109/TCI.2018.2840334 – ident: ref20 doi: 10.5555/3104322.3104374 – ident: ref27 doi: 10.1561/2200000016 – start-page: 3675 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref22 article-title: Sparse convolutional coding for neuronal assembly detection – ident: ref1 doi: 10.1190/1.3380591 – ident: ref8 doi: 10.1190/geo2014-0396.1 – ident: ref35 doi: 10.1109/ICCV.2017.459 – ident: ref13 doi: 10.1190/geo2014-0525.1 – ident: ref2 doi: 10.1190/geo2015-0598.1 – ident: ref12 doi: 10.1109/TSP.2006.881199 – ident: ref7 doi: 10.1109/TGRS.2020.3039738 – ident: ref16 doi: 10.1109/TGRS.2023.3286791 – year: 2014 ident: ref29 article-title: Optimization methods for convolutional sparse coding publication-title: arXiv:1406.2407 – start-page: 1099 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref21 article-title: Learning the morphology of brain signals using alpha-stable convolutional sparse coding – ident: ref23 doi: 10.1109/ICCV.2015.212 – ident: ref26 doi: 10.1109/LSP.2022.3175096 – ident: ref5 doi: 10.1109/TGRS.2018.2870087 – ident: ref11 doi: 10.1038/381607a0 – ident: ref33 doi: 10.1109/TIP.2015.2495260 – ident: ref43 doi: 10.1190/geo2013-0382.1 – year: 2019 ident: ref18 article-title: Stochastic convolutional sparse coding publication-title: arXiv:1909.00145 – ident: ref36 doi: 10.1109/TMI.2019.2906853 – ident: ref9 doi: 10.1109/TGRS.2022.3164460 – ident: ref42 doi: 10.1190/geo2014-0227.1 – ident: ref24 doi: 10.1111/cgf.12819 – ident: ref15 doi: 10.1109/TGRS.2021.3107541 – ident: ref32 doi: 10.1109/ICASSP.2014.6854992 – ident: ref34 doi: 10.1109/ICCV.2017.566 – ident: ref17 doi: 10.1109/ICASSP.2015.7178176 – year: 2014 ident: ref30 article-title: Fast convolutional sparse coding (FCSC) – ident: ref37 doi: 10.1190/geo2019-0746.1 – ident: ref25 doi: 10.1109/TCI.2022.3175309 – ident: ref14 doi: 10.1190/geo2017-0310.1 – ident: ref40 doi: 10.1023/A:1004603514434 – ident: ref4 doi: 10.1190/geo2013-0168.1 – ident: ref38 doi: 10.1109/TGRS.2023.3303449 – ident: ref41 doi: 10.1093/gji/ggw492 – ident: ref19 doi: 10.1109/CVPR.2010.5539957 – ident: ref6 doi: 10.1109/TGRS.2018.2872416 – ident: ref10 doi: 10.1016/j.jappgeo.2021.104446 – ident: ref31 doi: 10.1109/CVPR.2015.7299149 |
| SSID | ssj0014517 |
| Score | 2.4419317 |
| Snippet | Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Coding Computational efficiency Computer applications Convolution Convolutional codes Convolutional sparse coding (CSC) Dictionaries Encoding Feature maps Filters Least squares Machine learning Noise reduction penalized weighted least square (PWLS) Random noise Regularization Seismic data seismic data denoising Seismic response Singular value decomposition sparse feature maps Synthetic data |
| Title | Efficient Convolutional Sparse Coding Based on Penalized Weighted Least Squares for Seismic Data Denoising |
| URI | https://ieeexplore.ieee.org/document/10680067 https://www.proquest.com/docview/3112927701 |
| Volume | 62 |
| WOSCitedRecordID | wos001329087800051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BKhI9QMtDXQqVDz1VCsTJbOwcefeAVit2pXKLHGdW2kpNln1w6K_vjBMQFeLAzYlsK_GMPd_MeGYAvmPlJqjRRWmexhEmk35Ual9GsctISwp9Y9piE2YwsPf3-bALVg-xMEQULp_RiTSDL79q_EpMZbzDMyvH6zqsG5O1wVrPLgPs6y42OotYi0g6F6aO89Pxzd2IVcEET1Lss5Jt_hNCoarKq6M4yJfrnXd-2SfY7oCkOmsp_xnWqN6Fjy_SC-7CZrje6Rd78PsqZIrgOdRFUz927MbDRzNWbIlfighT5yzSKtXUakiCz__yw69gOuXGrRT5UaOHlQQsKYa6akTTxZ-pV5du6dQl1c1U7A77ML6-Gl_8jLoqC5FPMFtGFivDQsr3SXK_ez8p-e-IYUeWa5xoWzqDWFmHpU_Ip8Y6U2Hmbeqt1s6lB7BRNzV9AWXJWvHjiFKG3NUxG6DLPcbeMfChHvx4WvVi1ubSKIIOEueFkKgQEhUdiXqwL8v8omO7wj04eiJU0W23RZEKamS2ivXhG8O-wpbM3hpPjmBjOV_RMXzwj8vpYv4tcNI_Sl_GZg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLYKLSoc2kJBLGzLHHqqFMgkTjI58iwV2xXqrgS3aDLxSlupCbCPQ3997UmoQFUPvU2imTzGnvFne2wDfMLKTlCjDeI8DgOMJklQalcGoU1JSwr9LGuLTWTDobm9za-7YHUfC0NE_vAZHUrT-_Krxi3EVMYrPDWyva7AywQxCttwrT9OA0x0Fx2dBqxHRJ0TU4f50fjL9xErgxEexpiwmp09E0O-rspfm7GXMBdv__Pb3sGbDkqq45b2m_CC6i3YeJJgcAvW_AFPN3sPP859rgh-hjpt6mXHcDx8dMeqLfFNEWLqhIVapZpaXZMg9F98ceONp9wYSJkfNbpfSMiSYrCrRjSd_Zw6dWbnVp1R3UzF8rAN44vz8ell0NVZCFyE6TwwWGUsplxCkv3duUnJf0cMPNJc40Sb0maIlbFYuohcnBmbVZg6EzujtbXxDqzWTU27oAwZI54cUcuQu1pmBLS5w9BZhj7Ug8-Ps17ctdk0Cq-FhHkhJCqEREVHoh5syzQ_6djOcA_6j4QqugU3K2LBjcxYod77x7ADeH05_jYoBl-HV_uwLm9qTSl9WJ0_LOgDvHLL-XT28NFz1W_Gc8mt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Convolutional+Sparse+Coding+Based+on+Penalized+Weighted+Least+Squares+for+Seismic+Data+Denoising&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Bai%2C+Min&rft.au=Yang%2C+Bo&rft.au=Wu%2C+Juan&rft.au=Zhou%2C+Zixiang&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2024.3459877&rft.externalDocID=10680067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |