Efficient Convolutional Sparse Coding Based on Penalized Weighted Least Squares for Seismic Data Denoising

Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods based on patching schemes in that it can directly process the whole data and capture correlations between local neighborhoods. However, the le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 62; S. 1 - 12
Hauptverfasser: Bai, Min, Yang, Bo, Wu, Juan, Zhou, Zixiang, Cui, Yang, Ma, Zhaoyang, Zeng, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods based on patching schemes in that it can directly process the whole data and capture correlations between local neighborhoods. However, the learned filters by CSC may contain inaccurate features resulting in the structure loss of data, and solving CSC problems has a heavy computational burden. To optimize these problems, we investigate the denoising accuracy of the CSC model and introduce CSC as a regularization term into the penalized weighted least-squares (PWLSs) framework. In particular, we design an effective method to solve the problem of updating sparse feature maps, which improves computational efficiency. Combining the above two points, we propose an efficient CSC (ECSC) model for random noise attenuation of seismic data. The numerical experiments on synthetic data and field data demonstrate that ECSC performs better than the K-singular value decomposition (K-SVD) algorithm, sequential generalized K-means (SGK) algorithm, and fast and flexible CSC (FF-CSC) in seismic data denoising performance and computational efficiency.
AbstractList Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods based on patching schemes in that it can directly process the whole data and capture correlations between local neighborhoods. However, the learned filters by CSC may contain inaccurate features resulting in the structure loss of data, and solving CSC problems has a heavy computational burden. To optimize these problems, we investigate the denoising accuracy of the CSC model and introduce CSC as a regularization term into the penalized weighted least-squares (PWLSs) framework. In particular, we design an effective method to solve the problem of updating sparse feature maps, which improves computational efficiency. Combining the above two points, we propose an efficient CSC (ECSC) model for random noise attenuation of seismic data. The numerical experiments on synthetic data and field data demonstrate that ECSC performs better than the K-singular value decomposition (K-SVD) algorithm, sequential generalized K-means (SGK) algorithm, and fast and flexible CSC (FF-CSC) in seismic data denoising performance and computational efficiency.
Author Wu, Juan
Ma, Zhaoyang
Bai, Min
Yang, Bo
Zhou, Zixiang
Cui, Yang
Zeng, Yang
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0002-2692-5402
  surname: Bai
  fullname: Bai, Min
  email: baimin@yangtzeu.edu.cn
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
– sequence: 2
  givenname: Bo
  orcidid: 0009-0007-1671-8251
  surname: Yang
  fullname: Yang, Bo
  email: ycl2980738443@163.com
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
– sequence: 3
  givenname: Juan
  orcidid: 0000-0002-5064-1987
  surname: Wu
  fullname: Wu, Juan
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
– sequence: 4
  givenname: Zixiang
  orcidid: 0000-0002-6875-9422
  surname: Zhou
  fullname: Zhou, Zixiang
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
– sequence: 5
  givenname: Yang
  orcidid: 0009-0008-4685-9458
  surname: Cui
  fullname: Cui, Yang
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
– sequence: 6
  givenname: Zhaoyang
  surname: Ma
  fullname: Ma, Zhaoyang
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
– sequence: 7
  givenname: Yang
  surname: Zeng
  fullname: Zeng, Yang
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education and the College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
BookMark eNpNUE1PAjEUbAwmAvoDTDw08bzY1-1uu0cFRBMSjZB4bEq3iyXQQrtror_eEjj4Lu9rZjKZAeo57wxCt0BGAKR6WM4-FiNKKBvlrKgE5xeoD0UhMlIy1kN9AlWZUVHRKzSIcUMIsAJ4H22mTWO1Na7FY---_bZrrXdqixd7FaJJx9q6NX5S0dTYO_xu0tP-puXT2PVXm4a5UbHFi0Ongom48QEvjI07q_FEtQpPjPM2JpFrdNmobTQ35z5Ey-fpcvySzd9mr-PHeaYpK9tMsJoDFbowgtJK62ZlUhEqygpYA2KlOGO1UGylqdE5F4rXrNQi1wJAqXyI7k-y--APnYmt3PguJNdR5gC0opwTSCg4oXTwMQbTyH2wOxV-JBB5TFQeE5XHROU50cS5O3FsMvQPXwpCSp7_AR9mdOw
CODEN IGRSD2
Cites_doi 10.1109/MCSE.2006.49
10.1109/CVPR.2013.57
10.1109/TCI.2018.2840334
10.5555/3104322.3104374
10.1561/2200000016
10.1190/1.3380591
10.1190/geo2014-0396.1
10.1109/ICCV.2017.459
10.1190/geo2014-0525.1
10.1190/geo2015-0598.1
10.1109/TSP.2006.881199
10.1109/TGRS.2020.3039738
10.1109/TGRS.2023.3286791
10.1109/ICCV.2015.212
10.1109/LSP.2022.3175096
10.1109/TGRS.2018.2870087
10.1038/381607a0
10.1109/TIP.2015.2495260
10.1190/geo2013-0382.1
10.1109/TMI.2019.2906853
10.1109/TGRS.2022.3164460
10.1190/geo2014-0227.1
10.1111/cgf.12819
10.1109/TGRS.2021.3107541
10.1109/ICASSP.2014.6854992
10.1109/ICCV.2017.566
10.1109/ICASSP.2015.7178176
10.1190/geo2019-0746.1
10.1109/TCI.2022.3175309
10.1190/geo2017-0310.1
10.1023/A:1004603514434
10.1190/geo2013-0168.1
10.1109/TGRS.2023.3303449
10.1093/gji/ggw492
10.1109/CVPR.2010.5539957
10.1109/TGRS.2018.2872416
10.1016/j.jappgeo.2021.104446
10.1109/CVPR.2015.7299149
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3459877
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 12
ExternalDocumentID 10_1109_TGRS_2024_3459877
10680067
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42174159; 41904110
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2021CFB498
  funderid: 10.13039/501100003819
– fundername: Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education
  grantid: KPI2021-01
  funderid: 10.13039/501100015917
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c246t-84d7128c5e8229ccfbeeee0286914f18ba744d8a4bc2ec378a7d46c83c811aa3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329087800051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:00:50 EDT 2025
Sat Nov 29 03:32:41 EST 2025
Wed Aug 27 02:18:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-84d7128c5e8229ccfbeeee0286914f18ba744d8a4bc2ec378a7d46c83c811aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-1671-8251
0000-0002-2692-5402
0000-0002-5064-1987
0000-0002-6875-9422
0009-0008-4685-9458
PQID 3112927701
PQPubID 85465
PageCount 12
ParticipantIDs ieee_primary_10680067
proquest_journals_3112927701
crossref_primary_10_1109_TGRS_2024_3459877
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
Jas (ref21)
ref2
ref1
ref17
Xiong (ref18) 2019
ref39
ref16
ref38
ref19
Bristow (ref29) 2014
Kong (ref30) 2014
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref43
Peter (ref22)
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1109/MCSE.2006.49
– ident: ref28
  doi: 10.1109/CVPR.2013.57
– ident: ref39
  doi: 10.1109/TCI.2018.2840334
– ident: ref20
  doi: 10.5555/3104322.3104374
– ident: ref27
  doi: 10.1561/2200000016
– start-page: 3675
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Sparse convolutional coding for neuronal assembly detection
– ident: ref1
  doi: 10.1190/1.3380591
– ident: ref8
  doi: 10.1190/geo2014-0396.1
– ident: ref35
  doi: 10.1109/ICCV.2017.459
– ident: ref13
  doi: 10.1190/geo2014-0525.1
– ident: ref2
  doi: 10.1190/geo2015-0598.1
– ident: ref12
  doi: 10.1109/TSP.2006.881199
– ident: ref7
  doi: 10.1109/TGRS.2020.3039738
– ident: ref16
  doi: 10.1109/TGRS.2023.3286791
– year: 2014
  ident: ref29
  article-title: Optimization methods for convolutional sparse coding
  publication-title: arXiv:1406.2407
– start-page: 1099
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Learning the morphology of brain signals using alpha-stable convolutional sparse coding
– ident: ref23
  doi: 10.1109/ICCV.2015.212
– ident: ref26
  doi: 10.1109/LSP.2022.3175096
– ident: ref5
  doi: 10.1109/TGRS.2018.2870087
– ident: ref11
  doi: 10.1038/381607a0
– ident: ref33
  doi: 10.1109/TIP.2015.2495260
– ident: ref43
  doi: 10.1190/geo2013-0382.1
– year: 2019
  ident: ref18
  article-title: Stochastic convolutional sparse coding
  publication-title: arXiv:1909.00145
– ident: ref36
  doi: 10.1109/TMI.2019.2906853
– ident: ref9
  doi: 10.1109/TGRS.2022.3164460
– ident: ref42
  doi: 10.1190/geo2014-0227.1
– ident: ref24
  doi: 10.1111/cgf.12819
– ident: ref15
  doi: 10.1109/TGRS.2021.3107541
– ident: ref32
  doi: 10.1109/ICASSP.2014.6854992
– ident: ref34
  doi: 10.1109/ICCV.2017.566
– ident: ref17
  doi: 10.1109/ICASSP.2015.7178176
– year: 2014
  ident: ref30
  article-title: Fast convolutional sparse coding (FCSC)
– ident: ref37
  doi: 10.1190/geo2019-0746.1
– ident: ref25
  doi: 10.1109/TCI.2022.3175309
– ident: ref14
  doi: 10.1190/geo2017-0310.1
– ident: ref40
  doi: 10.1023/A:1004603514434
– ident: ref4
  doi: 10.1190/geo2013-0168.1
– ident: ref38
  doi: 10.1109/TGRS.2023.3303449
– ident: ref41
  doi: 10.1093/gji/ggw492
– ident: ref19
  doi: 10.1109/CVPR.2010.5539957
– ident: ref6
  doi: 10.1109/TGRS.2018.2872416
– ident: ref10
  doi: 10.1016/j.jappgeo.2021.104446
– ident: ref31
  doi: 10.1109/CVPR.2015.7299149
SSID ssj0014517
Score 2.4420123
Snippet Recently, convolutional sparse coding (CSC) has been successfully applied to seismic data denoising. CSC differs from traditional dictionary learning methods...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Coding
Computational efficiency
Computer applications
Convolution
Convolutional codes
Convolutional sparse coding (CSC)
Dictionaries
Encoding
Feature maps
Filters
Least squares
Machine learning
Noise reduction
penalized weighted least square (PWLS)
Random noise
Regularization
Seismic data
seismic data denoising
Seismic response
Singular value decomposition
sparse feature maps
Synthetic data
Title Efficient Convolutional Sparse Coding Based on Penalized Weighted Least Squares for Seismic Data Denoising
URI https://ieeexplore.ieee.org/document/10680067
https://www.proquest.com/docview/3112927701
Volume 62
WOSCitedRecordID wos001329087800051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xf5OBJqG6aNEmPvlYPIuIu6K2k0xRWsFV314O_3knaFUU8eEtLE5r5kswrMwNwaHleqFQkkdSlL2Fmy8hwIaMYFUenUHIZAoVv9O2teXxM79pg9RAL45wLl8_csW8GX35R48SbymiHK-OP11mY1Vo1wVpfLgOZ8DY2WkWkRcStC5N305PB1X2fVMFYHguZkJKtfzChUFXl11Ec-Etv5Z9_tgrLrSDJThvk12DGVeuw9C294DoshOudONqAp8uQKYLGYOd19d4uN-refyHF1tFLz8LYGbG0gtUVu3NePv-gh4dgOqXGjS_yw_qvEx-wxEjUZX03HD0PkV3YsWUXrqqH3u6wCYPe5eD8OmqrLEQYSzWOjCw0MSlMnM_9jljmNDtHYodKuSy5ya2WsjBW5hg7FNpYXUiFRqDh3FqxBXNVXbltYLZrRZ6rpCD0ScsUuU-NL4xDnWCZmLwDR1OqZy9NLo0s6CDdNPMQZR6irIWoA5uezN8-bCjcgb0pUFm73UaZ8FJjrHWX7_zRbRcW_eiN8WQP5sZvE7cP8_g-Ho7eDsJK-gQqPMbT
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xFO2B8qq6lBYfOFUKxLFjO0fKs2K7QuxKcIuciSMtEglldznw6xk7oaKqOHBzojhxZmzPy98MwJ7lRakykUZSV76Ema0iw4WMElQcnULJZQAK9_VgYG5usssOrB6wMM65cPjM7ftmiOWXDc68q4xWuDJ-e52HxVTKJG7hWn-DBjLlHTpaRWRHJF0Qk8fZwejsakjGYCL3hUzJzNb_iKFQV-W_zThImNNP7xzbGqx2qiQ7bHm_DnOu3oCPrxIMbsByOOCJk024PQm5Iugd7KipH7sJR92H92TaOrrphRj7SUKtZE3NLp3X0J_o4jo4T6nR92V-2PDPzEOWGCm7bOjGk7sxsmM7tezY1c3Yex62YHR6Mjo6j7o6CxEmUk0jI0tNYgpT57O_I1YF_Z0jxUNlXFbcFFZLWRorC0wcCm2sLqVCI9Bwbq34DAt1U7svwGxsRVGotCT-k50pCp8cXxiHOsUqNUUPfrxQPb9vs2nkwQqJs9yzKPcsyjsW9WDLk_nVgy2Fe7Dzwqi8W3CTXHi9MdE65ttvdNuFlfPR737e_zW4-Aof_JdaV8oOLEwfZu4bLOHjdDx5-B5m1TOsBMoa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Convolutional+Sparse+Coding+Based+on+Penalized+Weighted+Least+Squares+for+Seismic+Data+Denoising&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Bai%2C+Min&rft.au=Yang%2C+Bo&rft.au=Wu%2C+Juan&rft.au=Zhou%2C+Zixiang&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2024.3459877&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3459877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon