Distributed On-Demand Routing Algorithm With Graph Representation Learning for Industrial IoT
Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To t...
Saved in:
| Published in: | IEEE transactions on network science and engineering Vol. 12; no. 1; pp. 332 - 343 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2327-4697, 2334-329X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks. |
|---|---|
| AbstractList | Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks. |
| Author | Huang, Wenrui Dai, Bin Li, Hetao |
| Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0003-2898-2811 surname: Dai fullname: Dai, Bin email: daibin@hust.edu.cn organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Hetao surname: Li fullname: Li, Hetao organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Wenrui surname: Huang fullname: Huang, Wenrui organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China |
| BookMark | eNpNkE1PwkAQhjcGExH5ASYeNvFcnP3oxx4JIJIQSRCjF9Ns2ymUwG7dbg_-e9vgwcvMHJ73neS5JQNjDRJyz2DCGKin3evbYsKBy4mQKpIiuSJDLoQMBFefg_7mcSAjFd-QcdMcAYDxJBJCDMnXvGq8q7LWY0E3JpjjWZuCbm3rK7On09PeusofzvSjm3TpdH2gW6wdNmi89pU1dI3amR4uraMrU7R9oT7Rld3dketSnxoc_-0ReX9e7GYvwXqzXM2m6yDnMvJBnEEEKHXJAXQYZgCcCWCFClWWhJnUeVREKmcQZprFGpCBzHmMcSZKzKNMjMjjpbd29rvFxqdH2zrTvUwFkwqUjCV0FLtQubNN47BMa1edtftJGaS9yLQXmfYi0z-RXebhkqkQ8R8fhwISKX4BpwpwwQ |
| CODEN | ITNSD5 |
| Cites_doi | 10.1109/ICC.2019.8761276 10.1145/964725.633040 10.1109/jiot.2022.3163228 10.1109/tii.2014.2306782 10.1109/JIOT.2022.3210703 10.1109/JSYST.2019.2922217 10.1109/ICNP52444.2021.9651930 10.1109/TNSM.2023.3240396 10.1109/INFCOMW.2019.8845154 10.1109/TPDS.2023.3284651 10.1109/ICDCS51616.2021.00056 10.1109/SCC.2016.12 10.1109/tcomm.2024.3429166 10.1109/JSYST.2022.3149990 10.1109/jiot.2020.2989924 10.1109/tnet.2024.3403671 10.3390/s150510026 10.1016/j.comcom.2022.09.029 10.1109/INFOCOM42981.2021.9488736 10.1109/INFOCOM.2018.8485853 10.1016/j.future.2018.09.043 10.1109/TII.2019.2946045 10.1016/j.jnca.2024.103927 10.1109/JSAC.2021.3126073 10.1145/3152434.3152441 10.1109/INFOCOMWKSHPS50562.2020.9162984 10.1016/j.future.2018.12.037 10.1109/jiot.2018.2797187 10.1109/LCN48667.2020.9314768 10.1109/ACCESS.2020.2966045 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2024.3496438 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 343 |
| ExternalDocumentID | 10_1109_TNSE_2024_3496438 10753084 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFB1800100 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c246t-7b060e4af200a55b0021301d959b85b4ac6d69c105ba17a0e104c27e7b3fec6b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385382200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4697 |
| IngestDate | Tue Sep 23 21:28:03 EDT 2025 Sat Nov 29 04:55:58 EST 2025 Wed Aug 27 02:28:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-7b060e4af200a55b0021301d959b85b4ac6d69c105ba17a0e104c27e7b3fec6b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2898-2811 |
| PQID | 3149094740 |
| PQPubID | 2040409 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10753084 proquest_journals_3149094740 crossref_primary_10_1109_TNSE_2024_3496438 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref10 ref32 Liu (ref27) 2021 Schulman (ref35) 2017 ref2 ref1 ref17 Jiang (ref16) 2022; 185 ref19 ref18 Sutton (ref34) 1999 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Hamilton (ref33) 2017 ref28 Stampa (ref7) 2017 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref21 doi: 10.1109/ICC.2019.8761276 – ident: ref36 doi: 10.1145/964725.633040 – ident: ref2 doi: 10.1109/jiot.2022.3163228 – ident: ref1 doi: 10.1109/tii.2014.2306782 – ident: ref8 doi: 10.1109/JIOT.2022.3210703 – ident: ref29 doi: 10.1109/JSYST.2019.2922217 – ident: ref15 doi: 10.1109/ICNP52444.2021.9651930 – ident: ref30 doi: 10.1109/TNSM.2023.3240396 – start-page: 1057 volume-title: Proc. 12th Int. Conf. Neural Inf. Process. Syst. year: 1999 ident: ref34 article-title: Policy gradient methods for reinforcement learning with function approximation – ident: ref24 doi: 10.1109/INFCOMW.2019.8845154 – ident: ref14 doi: 10.1109/TPDS.2023.3284651 – ident: ref31 doi: 10.1109/ICDCS51616.2021.00056 – ident: ref9 doi: 10.1109/SCC.2016.12 – start-page: 1025 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. year: 2017 ident: ref33 article-title: Inductive representation learning on large graphs – ident: ref3 doi: 10.1109/tcomm.2024.3429166 – ident: ref23 doi: 10.1109/JSYST.2022.3149990 – ident: ref11 doi: 10.1109/jiot.2020.2989924 – ident: ref5 doi: 10.1109/tnet.2024.3403671 – start-page: 1 volume-title: Proc. CoNEXT Student Workshop year: 2017 ident: ref7 article-title: A deep-reinforcement learning approach for software-defined networking routing optimization – year: 2017 ident: ref35 article-title: Proximal policy optimization algorithms – year: 2021 ident: ref27 article-title: Routing in small satellite networks: A GNN-based learning approach – ident: ref19 doi: 10.3390/s150510026 – ident: ref26 doi: 10.1016/j.comcom.2022.09.029 – ident: ref13 doi: 10.1109/INFOCOM42981.2021.9488736 – ident: ref17 doi: 10.1109/INFOCOM.2018.8485853 – ident: ref18 doi: 10.1016/j.future.2018.09.043 – ident: ref20 doi: 10.1109/TII.2019.2946045 – ident: ref32 doi: 10.1016/j.jnca.2024.103927 – ident: ref12 doi: 10.1109/JSAC.2021.3126073 – volume: 185 start-page: 40 volume-title: Comput. Commun. year: 2022 ident: ref16 article-title: Graph-based deep learning for communication networks: A survey – ident: ref6 doi: 10.1145/3152434.3152441 – ident: ref10 doi: 10.1109/INFOCOMWKSHPS50562.2020.9162984 – ident: ref25 doi: 10.1016/j.future.2018.12.037 – ident: ref4 doi: 10.1109/jiot.2018.2797187 – ident: ref22 doi: 10.1109/LCN48667.2020.9314768 – ident: ref28 doi: 10.1109/ACCESS.2020.2966045 |
| SSID | ssj0001286333 |
| Score | 2.2924976 |
| Snippet | Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 332 |
| SubjectTerms | Algorithms Deep learning deep reinforcement learning Delays Graph representation learning Graphical representations Heuristic algorithms Industrial applications Industrial Internet of Things Machine learning Network topology Quality of service Quality of service architectures Representation learning Routing routing optimization Scalability Topology Vectors |
| Title | Distributed On-Demand Routing Algorithm With Graph Representation Learning for Industrial IoT |
| URI | https://ieeexplore.ieee.org/document/10753084 https://www.proquest.com/docview/3149094740 |
| Volume | 12 |
| WOSCitedRecordID | wos001385382200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5s8aAHnxWrVfbgSUjdvHazx2JbFaSKVuxFwmZ3Ugs2kTb197u7STEgHryEQBIIM5nMfPP4BqEL6oLQmAscSAlzAu0zHcET7khGeZIyJV2w7Pr3bDSKJhP-WA2r21kYALDNZ9A1p7aWr3K5MqkybeE6uCZR0EANxmg5rFVLqETU9_2qcukSfjUePQ80AvSCrmFFD8wISs332GUqv_7A1q0Md__5Qntop4ofca9U-D7agOwAbddYBQ_RW9-Q4Zo9VqDwQ-b0YS4yhU3vj76Oex_TfDEr3uf4VR_xjWGsxk-2IbaaQ8pwxbo6xTqkxT_bPfBdPm6hl-FgfH3rVFsUHOkFtHBYQiiBQKTaHkQYWq-urVrxkCdRmARCUkW51HFWIlwmCGiAJj0GLPFTkDTxj1AzyzM4RphJlynwZaRcbiqiEXhS6fgtJEKGFKI2ulzLN_4syTJiCzIIj40yYqOMuFJGG7WMQGs3lrJso85aJXFlT8vY10BOA1EWkJM_HjtFW55ZzWuzIx3ULBYrOEOb8quYLRfn9lP5BstDvfQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwLVar7sGTkLp57WaPYqst1ipa0YuEze5UCzaVWv397m5XLIgHLyGQBMJMJvP-PoAjFqI0ORcG2KM8SIzPDKQoRKA4E0WPaxWiQ9dv804ne3wUN35Z3e3CIKIbPsOaPXW9fD1UH7ZUZizcBNc0S2Zh3lJn-XWtqZJKxuI49r3LkIqTbueuYXLAKKlZXPTELqFMeR9Hp_LrH-wcy_nqP19pDVZ8BElOJypfhxksN2B5CldwE57qFg7XMlmhJtdlUMeBLDWx0z_mOjl9fR6O-uOXAXkwR3JhMavJrRuJ9ZtIJfG4q8_EBLXkh9-DtIbdLbg_b3TPmoHnUQhUlLBxwAvKKCayZyxCpqnz68autUhFkaVFIhXTTCgTaRUy5JKiSdFUxJEXcQ8VK-JtmCuHJe4A4SrkGmOV6VDYnmiGkdImgkupVCnDrALH3_LN3yZwGblLM6jIrTJyq4zcK6MCW1agUzdOZFmB6rdKcm9R73lsUjmTivKE7v7x2CEsNrtX7bzd6lzuwVJkiXpdraQKc-PRB-7Dgvoc999HB-6z-QLcocE9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+On-Demand+Routing+Algorithm+With+Graph+Representation+Learning+for+Industrial+IoT&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Dai%2C+Bin&rft.au=Li%2C+Hetao&rft.au=Huang%2C+Wenrui&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=12&rft.issue=1&rft.spage=332&rft.epage=343&rft_id=info:doi/10.1109%2FTNSE.2024.3496438&rft.externalDocID=10753084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |