Distributed On-Demand Routing Algorithm With Graph Representation Learning for Industrial IoT

Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on network science and engineering Ročník 12; číslo 1; s. 332 - 343
Hlavní autori: Dai, Bin, Li, Hetao, Huang, Wenrui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4697, 2334-329X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks.
AbstractList Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks.
Author Huang, Wenrui
Dai, Bin
Li, Hetao
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0003-2898-2811
  surname: Dai
  fullname: Dai, Bin
  email: daibin@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Hetao
  surname: Li
  fullname: Li, Hetao
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Wenrui
  surname: Huang
  fullname: Huang, Wenrui
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
BookMark eNpNkE1PwkAQhjcGExH5ASYeNvFcnP3oxx4JIJIQSRCjF9Ns2ymUwG7dbg_-e9vgwcvMHJ73neS5JQNjDRJyz2DCGKin3evbYsKBy4mQKpIiuSJDLoQMBFefg_7mcSAjFd-QcdMcAYDxJBJCDMnXvGq8q7LWY0E3JpjjWZuCbm3rK7On09PeusofzvSjm3TpdH2gW6wdNmi89pU1dI3amR4uraMrU7R9oT7Rld3dketSnxoc_-0ReX9e7GYvwXqzXM2m6yDnMvJBnEEEKHXJAXQYZgCcCWCFClWWhJnUeVREKmcQZprFGpCBzHmMcSZKzKNMjMjjpbd29rvFxqdH2zrTvUwFkwqUjCV0FLtQubNN47BMa1edtftJGaS9yLQXmfYi0z-RXebhkqkQ8R8fhwISKX4BpwpwwQ
CODEN ITNSD5
Cites_doi 10.1109/ICC.2019.8761276
10.1145/964725.633040
10.1109/jiot.2022.3163228
10.1109/tii.2014.2306782
10.1109/JIOT.2022.3210703
10.1109/JSYST.2019.2922217
10.1109/ICNP52444.2021.9651930
10.1109/TNSM.2023.3240396
10.1109/INFCOMW.2019.8845154
10.1109/TPDS.2023.3284651
10.1109/ICDCS51616.2021.00056
10.1109/SCC.2016.12
10.1109/tcomm.2024.3429166
10.1109/JSYST.2022.3149990
10.1109/jiot.2020.2989924
10.1109/tnet.2024.3403671
10.3390/s150510026
10.1016/j.comcom.2022.09.029
10.1109/INFOCOM42981.2021.9488736
10.1109/INFOCOM.2018.8485853
10.1016/j.future.2018.09.043
10.1109/TII.2019.2946045
10.1016/j.jnca.2024.103927
10.1109/JSAC.2021.3126073
10.1145/3152434.3152441
10.1109/INFOCOMWKSHPS50562.2020.9162984
10.1016/j.future.2018.12.037
10.1109/jiot.2018.2797187
10.1109/LCN48667.2020.9314768
10.1109/ACCESS.2020.2966045
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2024.3496438
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 343
ExternalDocumentID 10_1109_TNSE_2024_3496438
10753084
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1800100
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-7b060e4af200a55b0021301d959b85b4ac6d69c105ba17a0e104c27e7b3fec6b3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385382200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Tue Sep 23 21:28:03 EDT 2025
Sat Nov 29 04:55:58 EST 2025
Wed Aug 27 02:28:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-7b060e4af200a55b0021301d959b85b4ac6d69c105ba17a0e104c27e7b3fec6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2898-2811
PQID 3149094740
PQPubID 2040409
PageCount 12
ParticipantIDs ieee_primary_10753084
proquest_journals_3149094740
crossref_primary_10_1109_TNSE_2024_3496438
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref10
ref32
Liu (ref27) 2021
Schulman (ref35) 2017
ref2
ref1
ref17
Jiang (ref16) 2022; 185
ref19
ref18
Sutton (ref34) 1999
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Hamilton (ref33) 2017
ref28
Stampa (ref7) 2017
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/ICC.2019.8761276
– ident: ref36
  doi: 10.1145/964725.633040
– ident: ref2
  doi: 10.1109/jiot.2022.3163228
– ident: ref1
  doi: 10.1109/tii.2014.2306782
– ident: ref8
  doi: 10.1109/JIOT.2022.3210703
– ident: ref29
  doi: 10.1109/JSYST.2019.2922217
– ident: ref15
  doi: 10.1109/ICNP52444.2021.9651930
– ident: ref30
  doi: 10.1109/TNSM.2023.3240396
– start-page: 1057
  volume-title: Proc. 12th Int. Conf. Neural Inf. Process. Syst.
  year: 1999
  ident: ref34
  article-title: Policy gradient methods for reinforcement learning with function approximation
– ident: ref24
  doi: 10.1109/INFCOMW.2019.8845154
– ident: ref14
  doi: 10.1109/TPDS.2023.3284651
– ident: ref31
  doi: 10.1109/ICDCS51616.2021.00056
– ident: ref9
  doi: 10.1109/SCC.2016.12
– start-page: 1025
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref33
  article-title: Inductive representation learning on large graphs
– ident: ref3
  doi: 10.1109/tcomm.2024.3429166
– ident: ref23
  doi: 10.1109/JSYST.2022.3149990
– ident: ref11
  doi: 10.1109/jiot.2020.2989924
– ident: ref5
  doi: 10.1109/tnet.2024.3403671
– start-page: 1
  volume-title: Proc. CoNEXT Student Workshop
  year: 2017
  ident: ref7
  article-title: A deep-reinforcement learning approach for software-defined networking routing optimization
– year: 2017
  ident: ref35
  article-title: Proximal policy optimization algorithms
– year: 2021
  ident: ref27
  article-title: Routing in small satellite networks: A GNN-based learning approach
– ident: ref19
  doi: 10.3390/s150510026
– ident: ref26
  doi: 10.1016/j.comcom.2022.09.029
– ident: ref13
  doi: 10.1109/INFOCOM42981.2021.9488736
– ident: ref17
  doi: 10.1109/INFOCOM.2018.8485853
– ident: ref18
  doi: 10.1016/j.future.2018.09.043
– ident: ref20
  doi: 10.1109/TII.2019.2946045
– ident: ref32
  doi: 10.1016/j.jnca.2024.103927
– ident: ref12
  doi: 10.1109/JSAC.2021.3126073
– volume: 185
  start-page: 40
  volume-title: Comput. Commun.
  year: 2022
  ident: ref16
  article-title: Graph-based deep learning for communication networks: A survey
– ident: ref6
  doi: 10.1145/3152434.3152441
– ident: ref10
  doi: 10.1109/INFOCOMWKSHPS50562.2020.9162984
– ident: ref25
  doi: 10.1016/j.future.2018.12.037
– ident: ref4
  doi: 10.1109/jiot.2018.2797187
– ident: ref22
  doi: 10.1109/LCN48667.2020.9314768
– ident: ref28
  doi: 10.1109/ACCESS.2020.2966045
SSID ssj0001286333
Score 2.2925942
Snippet Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 332
SubjectTerms Algorithms
Deep learning
deep reinforcement learning
Delays
Graph representation learning
Graphical representations
Heuristic algorithms
Industrial applications
Industrial Internet of Things
Machine learning
Network topology
Quality of service
Quality of service architectures
Representation learning
Routing
routing optimization
Scalability
Topology
Vectors
Title Distributed On-Demand Routing Algorithm With Graph Representation Learning for Industrial IoT
URI https://ieeexplore.ieee.org/document/10753084
https://www.proquest.com/docview/3149094740
Volume 12
WOSCitedRecordID wos001385382200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl4EjqzJs3HcbhNBZmiU3eRkqZvc-A62Tr_fpO0w4F48FIKbaHk19f3kfd7P4TOQUVDZnQUJLqZBowJFjgaQqAJpU0eKQlezuflTvR6cjBQDyVZ3XNhAMA3n0HDnfq9_HRqFq5UZi3cBtdEsnW0LgQvyForBRXJKaXlzmWTqMt-76ljM8CQNdxUdOYoKCu-x4up_PoDe7fS3fnnC-2i7TJ-xK0C8D20Btk-2lqZKniA3tpuGK7TsYIU32dBGyY6S7Hr_bHXcetjNJ2N8_cJfrVHfO0mVuNH3xBb8pAyXE5dHWEb0uIfdQ98O-1X0XO307-6CUoVhcCEjOeBSAgnwPTQ2oOOIu_VrVWnKlKJjBKmDU-5MjbOsnAJTcAmaCYUIBI6BMMTeogq2TSDI4SHWkqegtEhpSwKIZFKy0RwzVNi40pWQxfL9Y0_i2EZsU8yiIodGLEDIy7BqKGqW9CVG4u1rKH6EpK4tKd5TG0iZxNRwcjxH4-doM3QSfP66kgdVfLZAk7RhvnKx_PZmf9UvgHn-r1N
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB68Tp1Dz4JFSzJk2TR9F5wTlF5-VFSpqeqaCdzM3fb5JlOBAffCmFtlDy9fRccr7zAeyiSjrc6CTKdb2IOE955GgIkaaM1UWiJHo5n_tm2mrJx0d1HcjqnguDiL75DPfdqd_LL7pm4Epl1sJtcE0ln4RpJ50V6FpjJRUpGGNh77JO1UG7dduwOWDM991cdO5IKGPex8up_PoHe8dysvjPV1qChRBBksMh5MswgeUKzI_NFVyFp2M3DtcpWWFBrsroGN91WRDX_WOvk8O3527vtf_yTh7skZy6mdXkxrfEBiZSScLc1Wdig1ryo-9BzrvtCtydNNpHZ1HQUYhMzEU_SnMqKHLdsRahk8T7dWvXhUpULpOcayMKoYyNtCxgqaZoUzQTp5jmrING5GwNpspuietAOlpKUaDRMWM8iTGXSss8FVoU1EaWvAp7o_XNPobjMjKfZlCVOTAyB0YWwKhCxS3o2I3DtaxCbQRJFizqM2M2lbOpaMrpxh-P7cDsWfuymTXPWxebMBc7oV5fK6nBVL83wC2YMV_918_etv9svgHv3MCW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+On-Demand+Routing+Algorithm+With+Graph+Representation+Learning+for+Industrial+IoT&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Dai%2C+Bin&rft.au=Li%2C+Hetao&rft.au=Huang%2C+Wenrui&rft.date=2025-01-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=12&rft.issue=1&rft.spage=332&rft.epage=343&rft_id=info:doi/10.1109%2FTNSE.2024.3496438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2024_3496438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon