Distributed On-Demand Routing Algorithm With Graph Representation Learning for Industrial IoT

Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on network science and engineering Ročník 12; číslo 1; s. 332 - 343
Hlavní autoři: Dai, Bin, Li, Hetao, Huang, Wenrui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4697, 2334-329X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4697
2334-329X
DOI:10.1109/TNSE.2024.3496438