4Ward: A relayering strategy for efficient training of arbitrarily complex directed acyclic graphs
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 568; s. 127058 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.02.2024
|
| ISSN: | 0925-2312 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| ArticleNumber | 127058 |
|---|---|
| Author | Toschi, Nicola Duggento, Andrea Ferrante, Matteo Boccato, Tommaso |
| Author_xml | – sequence: 1 givenname: Tommaso orcidid: 0000-0003-3026-5221 surname: Boccato fullname: Boccato, Tommaso – sequence: 2 givenname: Matteo orcidid: 0000-0002-3481-0832 surname: Ferrante fullname: Ferrante, Matteo – sequence: 3 givenname: Andrea surname: Duggento fullname: Duggento, Andrea – sequence: 4 givenname: Nicola orcidid: 0000-0003-1929-5833 surname: Toschi fullname: Toschi, Nicola |
| BookMark | eNotkMtqwzAURLVIoUnaP-hCP2BXTz-6C6EvCHTT0qWQrq5SBccOkgv13zcmWQ0zAzNwVmTRDz0S8sBZyRmvHg9lj78wHEvBhCy5qJluFmTJWqELIbm4JaucD4zxmot2SZz6tsk_0Q1N2NkJU-z3NI_JjrifaBgSxRAiROxHek5jP_dDoDa5ePYpdhM9v506_KM-JoQRPbUwQReB7pM9_eQ7chNsl_H-qmvy9fL8uX0rdh-v79vNrgChqrGoFejKSeuZkwyr2jLhdANBoQYfuPdYOau8hLaprZYOOAelWsBaY-PaINdEXXYhDTknDOaU4tGmyXBmZjbmYC5szMzGXNjIf2xaYJU |
| Cites_doi | 10.1371/journal.pone.0149874 10.1103/RevModPhys.74.47 10.1016/j.chaos.2015.11.029 10.1016/j.procs.2019.09.165 10.7554/eLife.57443 10.1016/j.physleta.2004.12.078 10.1371/journal.pcbi.1001066 10.1016/j.protcy.2012.02.062 10.1016/j.simpa.2021.100193 10.1038/s41467-018-04316-3 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2023.127058 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2023_127058 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9DU 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN AAYWO AAYXX ABBOA ABCQJ ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K WUQ XPP ZMT ~G- ~HD |
| ID | FETCH-LOGICAL-c246t-74c56b3ad0b30e67a02b58cf4e5cdf1dde6ba4d3c987a53bc11c449ce75e8b9f3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127872300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:12:40 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c246t-74c56b3ad0b30e67a02b58cf4e5cdf1dde6ba4d3c987a53bc11c449ce75e8b9f3 |
| ORCID | 0000-0003-1929-5833 0000-0002-3481-0832 0000-0003-3026-5221 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0925231223011815 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2023_127058 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2024 |
| References | Scheffer (10.1016/j.neucom.2023.127058_b9) 2020; 9 Healy (10.1016/j.neucom.2023.127058_b29) 2002 Albert (10.1016/j.neucom.2023.127058_b16) 2002; 74 Tamassia (10.1016/j.neucom.2023.127058_b28) 2016 Varshney (10.1016/j.neucom.2023.127058_b8) 2011; 7 Wortsman (10.1016/j.neucom.2023.127058_b22) 2019 Xie (10.1016/j.neucom.2023.127058_b21) 2019 10.1016/j.neucom.2023.127058_b12 Erkaymaz (10.1016/j.neucom.2023.127058_b13) 2016; 83 Annunziato (10.1016/j.neucom.2023.127058_b15) 2007; vol. 4733 Zoph (10.1016/j.neucom.2023.127058_b24) 2017 Erkaymaz (10.1016/j.neucom.2023.127058_b14) 2017; 311 He (10.1016/j.neucom.2023.127058_b5) 2016 Simonyan (10.1016/j.neucom.2023.127058_b4) 2014 Roberts (10.1016/j.neucom.2023.127058_b23) 2019 Kingma (10.1016/j.neucom.2023.127058_b6) 2014 Simard (10.1016/j.neucom.2023.127058_b10) 2005; 336 Monteiro (10.1016/j.neucom.2023.127058_b2) 2016; 11 (10.1016/j.neucom.2023.127058_b19) 2019 He (10.1016/j.neucom.2023.127058_b30) 2015 Erdős (10.1016/j.neucom.2023.127058_b1) 1960; 5 Paszke (10.1016/j.neucom.2023.127058_b27) 2019 Sutskever (10.1016/j.neucom.2023.127058_b32) 2013; vol. 28 Kingma (10.1016/j.neucom.2023.127058_b31) 2015 Stier (10.1016/j.neucom.2023.127058_b3) 2022; 11 Gu (10.1016/j.neucom.2023.127058_b26) 2021 Stier (10.1016/j.neucom.2023.127058_b20) 2019; 159 Liu (10.1016/j.neucom.2023.127058_b25) 2019 Erkaymaz (10.1016/j.neucom.2023.127058_b11) 2012; 1 Mocanu (10.1016/j.neucom.2023.127058_b17) 2018; 9 You (10.1016/j.neucom.2023.127058_b18) 2020 Vaswani (10.1016/j.neucom.2023.127058_b7) 2017 |
| References_xml | – volume: 11 issue: 2 year: 2016 ident: 10.1016/j.neucom.2023.127058_b2 article-title: A model for improving the learning curves of artificial neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0149874 – volume: 74 start-page: 47 year: 2002 ident: 10.1016/j.neucom.2023.127058_b16 article-title: Statistical mechanics of complex networks publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.74.47 – year: 2016 ident: 10.1016/j.neucom.2023.127058_b28 – start-page: 12306 year: 2021 ident: 10.1016/j.neucom.2023.127058_b26 article-title: DOTS: Decoupling operation and topology in differentiable architecture search – volume: 83 start-page: 178 year: 2016 ident: 10.1016/j.neucom.2023.127058_b13 article-title: Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2015.11.029 – ident: 10.1016/j.neucom.2023.127058_b12 – year: 2017 ident: 10.1016/j.neucom.2023.127058_b24 article-title: Neural architecture search with reinforcement learning – year: 2019 ident: 10.1016/j.neucom.2023.127058_b19 – volume: 159 start-page: 107 year: 2019 ident: 10.1016/j.neucom.2023.127058_b20 article-title: Structural analysis of sparse neural networks publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.09.165 – year: 2019 ident: 10.1016/j.neucom.2023.127058_b25 article-title: DARTS: Differentiable architecture search – volume: 311 start-page: 22 year: 2017 ident: 10.1016/j.neucom.2023.127058_b14 article-title: Performance of small-world feedforward neural networks for the diagnosis of diabetes publication-title: Appl. Math. Comput. – volume: vol. 28 start-page: 1139 year: 2013 ident: 10.1016/j.neucom.2023.127058_b32 article-title: On the importance of initialization and momentum in deep learning – volume: 9 year: 2020 ident: 10.1016/j.neucom.2023.127058_b9 article-title: A connectome and analysis of the adult Drosophila central brain publication-title: eLife doi: 10.7554/eLife.57443 – volume: 336 start-page: 8 issue: 1 year: 2005 ident: 10.1016/j.neucom.2023.127058_b10 article-title: Fastest learning in small-world neural networks publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.12.078 – year: 2020 ident: 10.1016/j.neucom.2023.127058_b18 – year: 2014 ident: 10.1016/j.neucom.2023.127058_b4 – year: 2019 ident: 10.1016/j.neucom.2023.127058_b23 – volume: 5 start-page: 17 issue: 1 year: 1960 ident: 10.1016/j.neucom.2023.127058_b1 article-title: On the evolution of random graphs publication-title: Publ. Math. Inst. Hung. Acad. Sci. – year: 2019 ident: 10.1016/j.neucom.2023.127058_b22 article-title: Discovering neural wirings – year: 2015 ident: 10.1016/j.neucom.2023.127058_b31 article-title: Adam: A method for stochastic optimization – start-page: 8024 year: 2019 ident: 10.1016/j.neucom.2023.127058_b27 article-title: PyTorch: An imperative style, high-performance deep learning library – volume: 7 issue: 2 year: 2011 ident: 10.1016/j.neucom.2023.127058_b8 article-title: Structural properties of the caenorhabditis elegans neuronal network publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001066 – start-page: 1284 year: 2019 ident: 10.1016/j.neucom.2023.127058_b21 article-title: Exploring randomly wired neural networks for image recognition – start-page: 1026 year: 2015 ident: 10.1016/j.neucom.2023.127058_b30 article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification – start-page: 770 year: 2016 ident: 10.1016/j.neucom.2023.127058_b5 article-title: Deep residual learning for image recognition – year: 2014 ident: 10.1016/j.neucom.2023.127058_b6 article-title: Auto-encoding variational Bayes – volume: 1 start-page: 291 year: 2012 ident: 10.1016/j.neucom.2023.127058_b11 article-title: Performance analysis of a feed-forward artifical neural network with small-world topology publication-title: Proc. Technol. doi: 10.1016/j.protcy.2012.02.062 – year: 2017 ident: 10.1016/j.neucom.2023.127058_b7 article-title: Attention is all you need – volume: 11 year: 2022 ident: 10.1016/j.neucom.2023.127058_b3 article-title: Deepstruct – linking deep learning and graph theory publication-title: Softw. Impacts doi: 10.1016/j.simpa.2021.100193 – volume: vol. 4733 start-page: 194 year: 2007 ident: 10.1016/j.neucom.2023.127058_b15 article-title: Evolving complex neural networks – volume: 9 start-page: 2383 issue: 1 year: 2018 ident: 10.1016/j.neucom.2023.127058_b17 article-title: Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science publication-title: Nature Commun. doi: 10.1038/s41467-018-04316-3 – start-page: 16 year: 2002 ident: 10.1016/j.neucom.2023.127058_b29 article-title: How to layer a directed acyclic graph |
| SSID | ssj0017129 |
| Score | 2.4272528 |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 127058 |
| Title | 4Ward: A relayering strategy for efficient training of arbitrarily complex directed acyclic graphs |
| Volume | 568 |
| WOSCitedRecordID | wos001127872300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKLgcufCO-5QO3KqvEsRObW4FFgNCKQxG9RbYzRl1tk1Wbrrr_gx-MP-I0y0qIPXCJqjSyoryn8WTy5g1Cb8qM6YwannBRqISqlCfKpuWJEoUkVOdMG4_01_LkhC8W4ttk8iv2wlyclU3Ddztx_l-htucs2K519gZwD4vaE_a3Bd0eLez2-E_A0x_OQNE3nLtGlUvvNTjdBBfaIM8E7xvhVABxQoSXA6zV0jXhu4KHV5rDbhp2PJuUSn2pnR-2N7jejFNab--h_XCIvuwwWzn3hdpRbSgzvGstiH5k03TerlZy044q2WsHb-gc6joY_vmw_ekav9pBeDlsIfPWvpQvBybLce2C0Ch33hchCUtshnklHrMwZ6ePqO7LeDB3vxbsQ93h9KiBrVP-uEHwR_vLr3pr_7HnDUrEKHI7rcIqlVulCqvcQoekZMKG-8PZ5-PFl-HrVJmR4OHY331syfS6wet3M0p5RrnL_D6627904FkgywM0geYhuhcHeuA-vj9CynPnLZ7hPXNwZA62zMEDc3BkDm4NHjEH98zBkTm4Zw4OzHmMvn88nr__lPRDOBJNaNElJdWsULmsU5WnUJQyJYpxbSgwXZvM7o6FkrTOteClZLnSWaYpFRpKBlwJkz9BB03bwFOEoQYjteFAONBCpqIGzSlRBsCmUbR4hpL4nKrz4LVS_Q2f5ze8_gW6syfhS3TQrbfwCt3WF91ys37dg_wbZtx_pw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4Ward%3A+A+relayering+strategy+for+efficient+training+of+arbitrarily+complex+directed+acyclic+graphs&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Boccato%2C+Tommaso&rft.au=Ferrante%2C+Matteo&rft.au=Duggento%2C+Andrea&rft.au=Toschi%2C+Nicola&rft.date=2024-02-01&rft.issn=0925-2312&rft.volume=568&rft.spage=127058&rft_id=info:doi/10.1016%2Fj.neucom.2023.127058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2023_127058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |