Automated Detection of Hyperbola-Shaped Signature in Subbottom Profiler Sonar Image With Morphological Processing
Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially buried objects show hyperbola-shaped signatures in the SBP images. These signatures are valuable information, but their detection is time-cons...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 14 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially buried objects show hyperbola-shaped signatures in the SBP images. These signatures are valuable information, but their detection is time-consuming. In addition, noise and geometric spread further increase the difficulty of detection. This article proposes an automated detection method of hyperbola-shaped signatures in SBP images by utilizing morphological processing. The proposed method can be summarized into four steps: preprocessing, segmentation, morphological processing, and fitting. The morphological processing is the critical technology in the proposed method, including opening, dilation, and skeletonization. Trend curves of signatures can be outlined without a priori knowledge by exploiting morphological processing. The fitting algorithm can refine the curves further into an analytical curve. We validate the feasibility and effectiveness of the proposed method in field data acquired from the Marianas region. Meanwhile, we demonstrate that the proposed method better detects ill-shaped and large curvature hyperbola-shaped signatures. Compared with the template matching and the column-connection clustering (C3) methods, the proposed method can provide better precision and recall using an optimized threshold. In addition, the proposed method is a general detection methodology that can be applied to any SBP images with proper parameters. In conclusion, the morphological processing presented in this article can be employed as a generic hyperbola-shaped signature detection module in SBP image processing. |
|---|---|
| AbstractList | Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially buried objects show hyperbola-shaped signatures in the SBP images. These signatures are valuable information, but their detection is time-consuming. In addition, noise and geometric spread further increase the difficulty of detection. This article proposes an automated detection method of hyperbola-shaped signatures in SBP images by utilizing morphological processing. The proposed method can be summarized into four steps: preprocessing, segmentation, morphological processing, and fitting. The morphological processing is the critical technology in the proposed method, including opening, dilation, and skeletonization. Trend curves of signatures can be outlined without a priori knowledge by exploiting morphological processing. The fitting algorithm can refine the curves further into an analytical curve. We validate the feasibility and effectiveness of the proposed method in field data acquired from the Marianas region. Meanwhile, we demonstrate that the proposed method better detects ill-shaped and large curvature hyperbola-shaped signatures. Compared with the template matching and the column-connection clustering (C3) methods, the proposed method can provide better precision and recall using an optimized threshold. In addition, the proposed method is a general detection methodology that can be applied to any SBP images with proper parameters. In conclusion, the morphological processing presented in this article can be employed as a generic hyperbola-shaped signature detection module in SBP image processing. |
| Author | Cai, Chen Chen, Pengcheng Lu, Shaoping |
| Author_xml | – sequence: 1 givenname: Pengcheng orcidid: 0000-0001-9090-1109 surname: Chen fullname: Chen, Pengcheng email: chenpengcheng66@outlook.com organization: School of Earth Sciences and Engineering and Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 2 givenname: Shaoping orcidid: 0000-0002-3319-6295 surname: Lu fullname: Lu, Shaoping email: lushaoping@mail.sysu.edu.cn organization: School of Earth Sciences and Engineering and Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Sun Yat-sen University, Guangzhou, Guangdong, China – sequence: 3 givenname: Chen orcidid: 0009-0007-4847-997X surname: Cai fullname: Cai, Chen email: caich28@mail.sysu.edu.cn organization: School of Earth Sciences and Engineering and Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Sun Yat-sen University, Guangzhou, Guangdong, China |
| BookMark | eNpNkE1Lw0AQQBepYKv-AMHDgufU_U72WPxoBUUxFY9hk8y2W9Js3GwO_fem1IOnOcx7M_BmaNL6FhC6oWROKdH36-VnPmeEiTkXggvKztCUSpklRAkxQVNCtUpYptkFmvX9jhAqJE2n6GcxRL83EWr8CBGq6HyLvcWrQweh9I1J8q3pxm3uNq2JQwDsWpwPZenjKOKP4K1rIODctybgl73ZAP52cYvffOi2vvEbV5nmyFXQ967dXKFza5oerv_mJfp6flo_rJLX9-XLw-I1qZhQMZHUSm6lLquyrDOAUoFhmRE8BeAKpK1UrYmlkkkrNDOylDRjtYKUWpVpzS_R3eluF_zPAH0sdn4I7fiy4ESnmipGxUjRE1UF3_cBbNEFtzfhUFBSHMsWx7LFsWzxV3Z0bk-OA4B_vOKKCc1_AQppeGg |
| CODEN | IGRSD2 |
| Cites_doi | 10.1109/JOE.2021.3107609 10.1109/TGRS.2018.2799586 10.1016/j.autcon.2023.104776 10.3390/electronics9030541 10.1190/1.2732552 10.1029/2022JF006631 10.1130/G51198.1 10.1109/TEVC.2018.2869001 10.1016/S0031-3203(00)00136-9 10.1109/TSMC.1979.4310076 10.3390/rs13214401 10.1016/j.apacoust.2007.05.001 10.1007/s11001-014-9217-9 10.1007/978-3-662-03939-7 10.1017/CBO9780511841552 10.1016/bs.agph.2019.05.001 10.1111/j.1365-2478.1992.tb00552.x 10.1109/JSTSP.2012.2207371 10.1109/ACCESS.2019.2938264 10.1109/TGRS.2015.2462727 10.1038/s41467-020-18361-4 10.1029/138gm10 10.1130/B30149.1 10.1016/j.cageo.2013.04.012 10.1080/2151237X.2007.10129236 10.1007/978-3-642-13835-5 10.1109/TGRS.2009.2012701 10.1109/LGRS.2013.2248119 10.1111/j.1365-2478.1985.tb00778.x 10.1016/j.sigpro.2003.12.010 10.1029/2019EA000680 10.1109/TGRS.2016.2592679 10.1029/2008GC002312 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3443412 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TGRS_2024_3443412 10636249 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangzhou Science and Technology Planning grantid: 202102020456 – fundername: National Key Research and Development Plan of China grantid: 2023YFF0803301 funderid: 10.13039/501100001809 – fundername: Shanghai Sheshan National Geophysical Observatory grantid: SSOP202102 – fundername: National Natural Science Foundation of China grantid: 42074123; 42230805; 42106067 – fundername: Natural Science Foundation of Guangdong Province grantid: 2022A1515010090 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c246t-51f53f59bcbbd8eeb6ea28a437ee36e5fc6d90f1525f492a5b5182d6e71f68993 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300996600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:32:12 EDT 2025 Sat Nov 29 03:32:40 EST 2025 Wed Aug 27 02:03:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-51f53f59bcbbd8eeb6ea28a437ee36e5fc6d90f1525f492a5b5182d6e71f68993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-4847-997X 0000-0001-9090-1109 0000-0002-3319-6295 |
| PQID | 3097916214 |
| PQPubID | 85465 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3097916214 crossref_primary_10_1109_TGRS_2024_3443412 ieee_primary_10636249 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 Gonzales (ref28) 2017 ref9 Madsen (ref29) 2004 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref8 doi: 10.1109/JOE.2021.3107609 – ident: ref11 doi: 10.1109/TGRS.2018.2799586 – ident: ref16 doi: 10.1016/j.autcon.2023.104776 – ident: ref14 doi: 10.3390/electronics9030541 – ident: ref30 doi: 10.1190/1.2732552 – ident: ref3 doi: 10.1029/2022JF006631 – ident: ref2 doi: 10.1130/G51198.1 – ident: ref34 doi: 10.1109/TEVC.2018.2869001 – ident: ref25 doi: 10.1016/S0031-3203(00)00136-9 – ident: ref23 doi: 10.1109/TSMC.1979.4310076 – ident: ref9 doi: 10.3390/rs13214401 – ident: ref7 doi: 10.1016/j.apacoust.2007.05.001 – ident: ref26 doi: 10.1007/s11001-014-9217-9 – ident: ref27 doi: 10.1007/978-3-662-03939-7 – ident: ref19 doi: 10.1017/CBO9780511841552 – volume-title: Digital Image Processing year: 2017 ident: ref28 – ident: ref5 doi: 10.1016/bs.agph.2019.05.001 – ident: ref21 doi: 10.1111/j.1365-2478.1992.tb00552.x – ident: ref35 doi: 10.1109/JSTSP.2012.2207371 – ident: ref6 doi: 10.1109/ACCESS.2019.2938264 – ident: ref13 doi: 10.1109/TGRS.2015.2462727 – ident: ref1 doi: 10.1038/s41467-020-18361-4 – ident: ref32 doi: 10.1029/138gm10 – ident: ref31 doi: 10.1130/B30149.1 – ident: ref17 doi: 10.1016/j.cageo.2013.04.012 – ident: ref24 doi: 10.1080/2151237X.2007.10129236 – ident: ref4 doi: 10.1007/978-3-642-13835-5 – ident: ref12 doi: 10.1109/TGRS.2009.2012701 – ident: ref15 doi: 10.1109/LGRS.2013.2248119 – ident: ref22 doi: 10.1111/j.1365-2478.1985.tb00778.x – volume-title: Methods for Non-Linear Least Squares Problems year: 2004 ident: ref29 – ident: ref18 doi: 10.1016/j.sigpro.2003.12.010 – ident: ref20 doi: 10.1029/2019EA000680 – ident: ref10 doi: 10.1109/TGRS.2016.2592679 – ident: ref33 doi: 10.1029/2008GC002312 |
| SSID | ssj0014517 |
| Score | 2.4534361 |
| Snippet | Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Automation Clustering Curve fitting Data acquisition Fitting Geoscience and remote sensing Hyperbola-shaped signature Hyperbolas Image acquisition Image processing Image resolution Image segmentation morphological processing Morphology Noise Profilers Shape Signatures Sonar Sonar detection subbottom profiler (SBP) Template matching |
| Title | Automated Detection of Hyperbola-Shaped Signature in Subbottom Profiler Sonar Image With Morphological Processing |
| URI | https://ieeexplore.ieee.org/document/10636249 https://www.proquest.com/docview/3097916214 |
| Volume | 62 |
| WOSCitedRecordID | wos001300996600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore: IEL customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BolJ7KJRSdQtFPvRUKTR2_EiOiPKoBAh1acstcuwx7IGEZrP8fiZOtqJCPfQWKbETzReP5_O8AD55xZ1TgRBQmCfSDyVvbaJzzF1mrPDRe_7zzFxc5NfXxeWYrB5zYRAxBp_hfn8Zffm-cYv-qIxWuCZ9K4tVWDVGD8laf1wGUvExN1onxCLE6MLkafHl6uT7lKigkPuZlKS2xV-bUOyq8kwVx_3leOM_v2wTXo-GJDsYkH8DK1hvwasn5QW34EUM73Tzt_D7YNE1ZJuiZ1-xi9FXNWsCOyUW2lbEbpPprb2nu9PZzVDqk81qRkqlbzTW3LHLobN3y6ZkuLfs2x1pIfZr1t2y84aAWipQNqYd0Nu34cfx0dXhaTI2W0ickLpLFA8qC6qoXFX5HLHSaEVuZWYQM40qOO2LNPTtkoIshFWVImriNRoeNJG27B2s1U2N74FZy433QWBaKUkWihXC0FS8ctxZnesJfF5Kv7wfamqUkYukRdlDVfZQlSNUE9juxf3kwUHSE9hdAlaOy25eZmlhyN4VXH74x7AdeNnPPhyi7MJa1y7wI6y7h242b_fiH_UISxXKiQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BAQEHHqWIhQI-cEJKGzu2kxwroGzFdlWxC_QWOfaY7qFJyWb5_UwcLypCHLhFShxH88Xj-TwvgDdOcWuVJwQUFol0Y8lbk-gCC5vlRrjgPf86y-fz4vy8PIvJ6iEXBhFD8BkeDJfBl-9auxmOymiFa9K3srwJt4bWWTFd67fTQCoes6N1QjxCRCcmT8vD5cfPCyKDQh5kUpLiFn9sQ6Gvyl_KOOwwxw__89sewYNoSrKjEfvHcAObXbh_rcDgLtwJAZ52_QR-HG36lqxTdOw99iH-qmGtZ1PioV1N_DZZXJgrurtYfR-LfbJVw0itDK3G2kt2Nvb27tiCTPeOnVySHmLfVv0FO20Jqq0KZTHxgGbfgy_HH5bvpklst5BYIXWfKO5V5lVZ27p2BWKt0YjCyCxHzDQqb7UrUz80TPKyFEbVisiJ05hzr4m2ZU9hp2kbfAbMGJ475wWmtZJkoxghcnoVry23Rhd6Am-30q-uxqoaVWAjaVkNUFUDVFWEagJ7g7ivPThKegL7W8CquPDWVZaWOVm8gsvn_xj2Gu5Ol6ezanYy__QC7g0zjUcq-7DTdxt8Cbftz3617l6Fv-sXAUvN0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Hyperbola-Shaped+Signature+in+Subbottom+Profiler+Sonar+Image+With+Morphological+Processing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chen%2C+Pengcheng&rft.au=Lu%2C+Shaoping&rft.au=Cai%2C+Chen&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2024.3443412&rft.externalDocID=10636249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |