Automated Detection of Hyperbola-Shaped Signature in Subbottom Profiler Sonar Image With Morphological Processing

Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially buried objects show hyperbola-shaped signatures in the SBP images. These signatures are valuable information, but their detection is time-cons...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 14
Hlavní autori: Chen, Pengcheng, Lu, Shaoping, Cai, Chen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially buried objects show hyperbola-shaped signatures in the SBP images. These signatures are valuable information, but their detection is time-consuming. In addition, noise and geometric spread further increase the difficulty of detection. This article proposes an automated detection method of hyperbola-shaped signatures in SBP images by utilizing morphological processing. The proposed method can be summarized into four steps: preprocessing, segmentation, morphological processing, and fitting. The morphological processing is the critical technology in the proposed method, including opening, dilation, and skeletonization. Trend curves of signatures can be outlined without a priori knowledge by exploiting morphological processing. The fitting algorithm can refine the curves further into an analytical curve. We validate the feasibility and effectiveness of the proposed method in field data acquired from the Marianas region. Meanwhile, we demonstrate that the proposed method better detects ill-shaped and large curvature hyperbola-shaped signatures. Compared with the template matching and the column-connection clustering (C3) methods, the proposed method can provide better precision and recall using an optimized threshold. In addition, the proposed method is a general detection methodology that can be applied to any SBP images with proper parameters. In conclusion, the morphological processing presented in this article can be employed as a generic hyperbola-shaped signature detection module in SBP image processing.
AbstractList Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially buried objects show hyperbola-shaped signatures in the SBP images. These signatures are valuable information, but their detection is time-consuming. In addition, noise and geometric spread further increase the difficulty of detection. This article proposes an automated detection method of hyperbola-shaped signatures in SBP images by utilizing morphological processing. The proposed method can be summarized into four steps: preprocessing, segmentation, morphological processing, and fitting. The morphological processing is the critical technology in the proposed method, including opening, dilation, and skeletonization. Trend curves of signatures can be outlined without a priori knowledge by exploiting morphological processing. The fitting algorithm can refine the curves further into an analytical curve. We validate the feasibility and effectiveness of the proposed method in field data acquired from the Marianas region. Meanwhile, we demonstrate that the proposed method better detects ill-shaped and large curvature hyperbola-shaped signatures. Compared with the template matching and the column-connection clustering (C3) methods, the proposed method can provide better precision and recall using an optimized threshold. In addition, the proposed method is a general detection methodology that can be applied to any SBP images with proper parameters. In conclusion, the morphological processing presented in this article can be employed as a generic hyperbola-shaped signature detection module in SBP image processing.
Author Cai, Chen
Chen, Pengcheng
Lu, Shaoping
Author_xml – sequence: 1
  givenname: Pengcheng
  orcidid: 0000-0001-9090-1109
  surname: Chen
  fullname: Chen, Pengcheng
  email: chenpengcheng66@outlook.com
  organization: School of Earth Sciences and Engineering and Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Sun Yat-sen University, Guangzhou, Guangdong, China
– sequence: 2
  givenname: Shaoping
  orcidid: 0000-0002-3319-6295
  surname: Lu
  fullname: Lu, Shaoping
  email: lushaoping@mail.sysu.edu.cn
  organization: School of Earth Sciences and Engineering and Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Sun Yat-sen University, Guangzhou, Guangdong, China
– sequence: 3
  givenname: Chen
  orcidid: 0009-0007-4847-997X
  surname: Cai
  fullname: Cai, Chen
  email: caich28@mail.sysu.edu.cn
  organization: School of Earth Sciences and Engineering and Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Sun Yat-sen University, Guangzhou, Guangdong, China
BookMark eNpNkE1Lw0AQQBepYKv-AMHDgufU_U72WPxoBUUxFY9hk8y2W9Js3GwO_fem1IOnOcx7M_BmaNL6FhC6oWROKdH36-VnPmeEiTkXggvKztCUSpklRAkxQVNCtUpYptkFmvX9jhAqJE2n6GcxRL83EWr8CBGq6HyLvcWrQweh9I1J8q3pxm3uNq2JQwDsWpwPZenjKOKP4K1rIODctybgl73ZAP52cYvffOi2vvEbV5nmyFXQ967dXKFza5oerv_mJfp6flo_rJLX9-XLw-I1qZhQMZHUSm6lLquyrDOAUoFhmRE8BeAKpK1UrYmlkkkrNDOylDRjtYKUWpVpzS_R3eluF_zPAH0sdn4I7fiy4ESnmipGxUjRE1UF3_cBbNEFtzfhUFBSHMsWx7LFsWzxV3Z0bk-OA4B_vOKKCc1_AQppeGg
CODEN IGRSD2
Cites_doi 10.1109/JOE.2021.3107609
10.1109/TGRS.2018.2799586
10.1016/j.autcon.2023.104776
10.3390/electronics9030541
10.1190/1.2732552
10.1029/2022JF006631
10.1130/G51198.1
10.1109/TEVC.2018.2869001
10.1016/S0031-3203(00)00136-9
10.1109/TSMC.1979.4310076
10.3390/rs13214401
10.1016/j.apacoust.2007.05.001
10.1007/s11001-014-9217-9
10.1007/978-3-662-03939-7
10.1017/CBO9780511841552
10.1016/bs.agph.2019.05.001
10.1111/j.1365-2478.1992.tb00552.x
10.1109/JSTSP.2012.2207371
10.1109/ACCESS.2019.2938264
10.1109/TGRS.2015.2462727
10.1038/s41467-020-18361-4
10.1029/138gm10
10.1130/B30149.1
10.1016/j.cageo.2013.04.012
10.1080/2151237X.2007.10129236
10.1007/978-3-642-13835-5
10.1109/TGRS.2009.2012701
10.1109/LGRS.2013.2248119
10.1111/j.1365-2478.1985.tb00778.x
10.1016/j.sigpro.2003.12.010
10.1029/2019EA000680
10.1109/TGRS.2016.2592679
10.1029/2008GC002312
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3443412
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2024_3443412
10636249
Genre orig-research
GrantInformation_xml – fundername: Guangzhou Science and Technology Planning
  grantid: 202102020456
– fundername: National Key Research and Development Plan of China
  grantid: 2023YFF0803301
  funderid: 10.13039/501100001809
– fundername: Shanghai Sheshan National Geophysical Observatory
  grantid: SSOP202102
– fundername: National Natural Science Foundation of China
  grantid: 42074123; 42230805; 42106067
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515010090
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c246t-51f53f59bcbbd8eeb6ea28a437ee36e5fc6d90f1525f492a5b5182d6e71f68993
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300996600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:32:12 EDT 2025
Sat Nov 29 03:32:40 EST 2025
Wed Aug 27 02:03:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-51f53f59bcbbd8eeb6ea28a437ee36e5fc6d90f1525f492a5b5182d6e71f68993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-4847-997X
0000-0001-9090-1109
0000-0002-3319-6295
PQID 3097916214
PQPubID 85465
PageCount 14
ParticipantIDs proquest_journals_3097916214
crossref_primary_10_1109_TGRS_2024_3443412
ieee_primary_10636249
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
Gonzales (ref28) 2017
ref9
Madsen (ref29) 2004
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/JOE.2021.3107609
– ident: ref11
  doi: 10.1109/TGRS.2018.2799586
– ident: ref16
  doi: 10.1016/j.autcon.2023.104776
– ident: ref14
  doi: 10.3390/electronics9030541
– ident: ref30
  doi: 10.1190/1.2732552
– ident: ref3
  doi: 10.1029/2022JF006631
– ident: ref2
  doi: 10.1130/G51198.1
– ident: ref34
  doi: 10.1109/TEVC.2018.2869001
– ident: ref25
  doi: 10.1016/S0031-3203(00)00136-9
– ident: ref23
  doi: 10.1109/TSMC.1979.4310076
– ident: ref9
  doi: 10.3390/rs13214401
– ident: ref7
  doi: 10.1016/j.apacoust.2007.05.001
– ident: ref26
  doi: 10.1007/s11001-014-9217-9
– ident: ref27
  doi: 10.1007/978-3-662-03939-7
– ident: ref19
  doi: 10.1017/CBO9780511841552
– volume-title: Digital Image Processing
  year: 2017
  ident: ref28
– ident: ref5
  doi: 10.1016/bs.agph.2019.05.001
– ident: ref21
  doi: 10.1111/j.1365-2478.1992.tb00552.x
– ident: ref35
  doi: 10.1109/JSTSP.2012.2207371
– ident: ref6
  doi: 10.1109/ACCESS.2019.2938264
– ident: ref13
  doi: 10.1109/TGRS.2015.2462727
– ident: ref1
  doi: 10.1038/s41467-020-18361-4
– ident: ref32
  doi: 10.1029/138gm10
– ident: ref31
  doi: 10.1130/B30149.1
– ident: ref17
  doi: 10.1016/j.cageo.2013.04.012
– ident: ref24
  doi: 10.1080/2151237X.2007.10129236
– ident: ref4
  doi: 10.1007/978-3-642-13835-5
– ident: ref12
  doi: 10.1109/TGRS.2009.2012701
– ident: ref15
  doi: 10.1109/LGRS.2013.2248119
– ident: ref22
  doi: 10.1111/j.1365-2478.1985.tb00778.x
– volume-title: Methods for Non-Linear Least Squares Problems
  year: 2004
  ident: ref29
– ident: ref18
  doi: 10.1016/j.sigpro.2003.12.010
– ident: ref20
  doi: 10.1029/2019EA000680
– ident: ref10
  doi: 10.1109/TGRS.2016.2592679
– ident: ref33
  doi: 10.1029/2008GC002312
SSID ssj0014517
Score 2.4534361
Snippet Subbottom profilers (SBPs) using shipboard sonar can acquire massive amounts of data during exploration missions. Some geological intrusions and artificially...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Automation
Clustering
Curve fitting
Data acquisition
Fitting
Geoscience and remote sensing
Hyperbola-shaped signature
Hyperbolas
Image acquisition
Image processing
Image resolution
Image segmentation
morphological processing
Morphology
Noise
Profilers
Shape
Signatures
Sonar
Sonar detection
subbottom profiler (SBP)
Template matching
Title Automated Detection of Hyperbola-Shaped Signature in Subbottom Profiler Sonar Image With Morphological Processing
URI https://ieeexplore.ieee.org/document/10636249
https://www.proquest.com/docview/3097916214
Volume 62
WOSCitedRecordID wos001300996600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore: IEL
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BolJ7KJRSdQtFPvRUKTR2_EiOiPKoBAh1acstcuwx7IGEZrP8fiZOtqJCPfQWKbETzReP5_O8AD55xZ1TgRBQmCfSDyVvbaJzzF1mrPDRe_7zzFxc5NfXxeWYrB5zYRAxBp_hfn8Zffm-cYv-qIxWuCZ9K4tVWDVGD8laf1wGUvExN1onxCLE6MLkafHl6uT7lKigkPuZlKS2xV-bUOyq8kwVx_3leOM_v2wTXo-GJDsYkH8DK1hvwasn5QW34EUM73Tzt_D7YNE1ZJuiZ1-xi9FXNWsCOyUW2lbEbpPprb2nu9PZzVDqk81qRkqlbzTW3LHLobN3y6ZkuLfs2x1pIfZr1t2y84aAWipQNqYd0Nu34cfx0dXhaTI2W0ickLpLFA8qC6qoXFX5HLHSaEVuZWYQM40qOO2LNPTtkoIshFWVImriNRoeNJG27B2s1U2N74FZy433QWBaKUkWihXC0FS8ctxZnesJfF5Kv7wfamqUkYukRdlDVfZQlSNUE9juxf3kwUHSE9hdAlaOy25eZmlhyN4VXH74x7AdeNnPPhyi7MJa1y7wI6y7h242b_fiH_UISxXKiQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BAQEHHqWIhQI-cEJKGzu2kxwroGzFdlWxC_QWOfaY7qFJyWb5_UwcLypCHLhFShxH88Xj-TwvgDdOcWuVJwQUFol0Y8lbk-gCC5vlRrjgPf86y-fz4vy8PIvJ6iEXBhFD8BkeDJfBl-9auxmOymiFa9K3srwJt4bWWTFd67fTQCoes6N1QjxCRCcmT8vD5cfPCyKDQh5kUpLiFn9sQ6Gvyl_KOOwwxw__89sewYNoSrKjEfvHcAObXbh_rcDgLtwJAZ52_QR-HG36lqxTdOw99iH-qmGtZ1PioV1N_DZZXJgrurtYfR-LfbJVw0itDK3G2kt2Nvb27tiCTPeOnVySHmLfVv0FO20Jqq0KZTHxgGbfgy_HH5bvpklst5BYIXWfKO5V5lVZ27p2BWKt0YjCyCxHzDQqb7UrUz80TPKyFEbVisiJ05hzr4m2ZU9hp2kbfAbMGJ475wWmtZJkoxghcnoVry23Rhd6Am-30q-uxqoaVWAjaVkNUFUDVFWEagJ7g7ivPThKegL7W8CquPDWVZaWOVm8gsvn_xj2Gu5Ol6ezanYy__QC7g0zjUcq-7DTdxt8Cbftz3617l6Fv-sXAUvN0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Hyperbola-Shaped+Signature+in+Subbottom+Profiler+Sonar+Image+With+Morphological+Processing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chen%2C+Pengcheng&rft.au=Lu%2C+Shaoping&rft.au=Cai%2C+Chen&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2024.3443412&rft.externalDocID=10636249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon