Adaptive Environment Generation for Continual Learning: Integrating Constraint Logic Programming With Deep Reinforcement Learning

In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive environments for continual learning. We focus on two challenging domains: Sudoku puzzles and scheduling problems, where environment complexity ev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cognitive and developmental systems Vol. 17; no. 3; pp. 540 - 553
Main Authors: Boutyour, Youness, Idrissi, Abdellah
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2379-8920, 2379-8939
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive environments for continual learning. We focus on two challenging domains: Sudoku puzzles and scheduling problems, where environment complexity evolves based on the agent's performance. By integrating CLP, we dynamically adjust problem difficulty in response to the agent's learning trajectory, ensuring a progressively challenging environment that fosters enhanced problem-solving skills. Empirical results across 500 000 episodes show substantial improvements in solve rates, increasing from 6% to 86% for sudoku puzzles and 7% to 79% for scheduling problems, alongside significant reductions in the average steps required to solve each problem. The proposed adaptive environment generation demonstrates the potential of CLP in advancing RL agents' continual learning capabilities by dynamically regulating complexity, thus improving their adaptability and learning efficiency. This framework contributes to the broader fields of reinforcement learning and procedural content generation by introducing an innovative approach to continual adaptation in complex environments.
AbstractList In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive environments for continual learning. We focus on two challenging domains: Sudoku puzzles and scheduling problems, where environment complexity evolves based on the agent's performance. By integrating CLP, we dynamically adjust problem difficulty in response to the agent's learning trajectory, ensuring a progressively challenging environment that fosters enhanced problem-solving skills. Empirical results across 500 000 episodes show substantial improvements in solve rates, increasing from 6% to 86% for sudoku puzzles and 7% to 79% for scheduling problems, alongside significant reductions in the average steps required to solve each problem. The proposed adaptive environment generation demonstrates the potential of CLP in advancing RL agents' continual learning capabilities by dynamically regulating complexity, thus improving their adaptability and learning efficiency. This framework contributes to the broader fields of reinforcement learning and procedural content generation by introducing an innovative approach to continual adaptation in complex environments.
Author Idrissi, Abdellah
Boutyour, Youness
Author_xml – sequence: 1
  givenname: Youness
  orcidid: 0009-0006-5684-2751
  surname: Boutyour
  fullname: Boutyour, Youness
  email: youness.boutyour@um5r.ac.ma
  organization: Department of Computer Science, Faculty of Sciences, Mohammed V University, Rabat, Morocco
– sequence: 2
  givenname: Abdellah
  orcidid: 0000-0001-5696-3007
  surname: Idrissi
  fullname: Idrissi, Abdellah
  organization: Department of Computer Science, Faculty of Sciences, Mohammed V University, Rabat, Morocco
BookMark eNpNUEtLw0AQXkTBWvsDBA8LnlP3lU3WW0lrLRQUrXgM22RSt7S7cbMtePSfm9gqMoeZ4XvBd4FOrbOA0BUlQ0qJul1k45chI0wMuUhjkbIT1GM8UVGquDr9uxk5R4OmWRNCqORJKpIe-hqVug5mD3hi98Y7uwUb8BQseB2Ms7hyHmfOBmN3eoPnoL01dnWHZzbAquPYVYc3wWvTKuduZQr85F2Lbbcd-GbCOx4D1PgZjG3tCvjJ-LW6RGeV3jQwOO4-er2fLLKHaP44nWWjeVQwIUPEY8FIIpfLEpQElSw5tJ_iaVLEEhItJKuYoCUVFSkqKXihlZCiZKXSy4oo3kc3B9_au48dNCFfu523bWTOGY1VzGk7fUQPrMK7pvFQ5bU3W-0_c0ryruy8Kzvvys6PZbea64PGAMA_fsJlLGL-DR5cfsM
CODEN ITCDA4
Cites_doi 10.1007/978-3-031-33309-5_5
10.1109/TG.2022.3175795
10.1016/j.asoc.2024.111305
10.1109/ICRA48506.2021.9561593
10.1109/TCIAIG.2013.2290371
10.4204/EPTCS.325.38
10.1016/j.patcog.2023.110238
10.1007/978-3-031-37189-9_39
10.1109/TG.2021.3076368
10.1016/j.compag.2024.109162
10.1109/ACCESS.2023.3313725
10.1109/tnnls.2023.3348422
10.1007/s10489-020-01758-5
10.1109/TCDS.2023.3287987
10.1145/3649921.3659844
10.1093/logcom/exad032
10.1109/TCDS.2022.3218940
10.1016/j.ifacol.2023.10.1688
10.1109/CoG52621.2021.9619131
10.1007/s11042-023-14945-6
10.1007/s11432-021-3347-8
10.1007/978-3-642-20589-7_14
10.1109/TPAMI.2022.3185549
10.1109/TG.2020.3046133
10.5220/0007257904110418
10.1016/j.neucom.2022.10.058
10.1260/147807708784640081
10.1111/tops.12143
10.1109/ICTAI59109.2023.00038
10.1109/TCDS.2022.3231055
10.1007/s10994-023-06311-2
10.4271/2017-01-0237
10.1145/3459991
10.1073/pnas.1611835114
10.1613/jair.1.13673
10.1109/TCIAIG.2011.2158545
10.1115/1.4046293
10.1613/jair.1.14174
10.1016/j.ins.2022.11.051
10.1016/j.inffus.2019.12.004
10.1007/s10489-020-01786-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2024.3485482
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 553
ExternalDocumentID 10_1109_TCDS_2024_3485482
10736545
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-3542076bbde96e97b3e76b9387c56e7a462f241d14f0cf643ca9464d2d9abf093
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502494600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-8920
IngestDate Mon Jun 30 07:38:13 EDT 2025
Sat Nov 29 07:53:45 EST 2025
Wed Jun 11 06:03:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-3542076bbde96e97b3e76b9387c56e7a462f241d14f0cf643ca9464d2d9abf093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-5684-2751
0000-0001-5696-3007
PQID 3215953131
PQPubID 85513
PageCount 14
ParticipantIDs proquest_journals_3215953131
crossref_primary_10_1109_TCDS_2024_3485482
ieee_primary_10736545
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref47
ref42
ref41
ref43
Clavera (ref5) 1803
ref8
ref7
ref9
ref4
ref3
ref6
ref35
ref34
ref36
ref31
ref30
ref33
ref32
Chesani (ref44); 2214
Sutton (ref1) 2018
ref2
ref39
Justesen (ref50) 2018
Berthier (ref40) 2013
Rolnick (ref48) 2019; 32
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Glorian (ref37) 2021; 210
ref29
Schwarz (ref49) 2018; 80
Smith (ref38) 2023
References_xml – ident: ref14
  doi: 10.1007/978-3-031-33309-5_5
– ident: ref22
  doi: 10.1109/TG.2022.3175795
– ident: ref8
  doi: 10.1016/j.asoc.2024.111305
– volume: 210
  start-page: 1
  volume-title: Proc. 27th Int. Conf. Princ. Pract. Constraint Program. (CP)
  year: 2021
  ident: ref37
  article-title: The dungeon variations problem using constraint programming
– ident: ref11
  doi: 10.1109/ICRA48506.2021.9561593
– ident: ref21
  doi: 10.1109/TCIAIG.2013.2290371
– ident: ref41
  doi: 10.4204/EPTCS.325.38
– ident: ref16
  doi: 10.1016/j.patcog.2023.110238
– ident: ref35
  doi: 10.1007/978-3-031-37189-9_39
– ident: ref24
  doi: 10.1109/TG.2021.3076368
– ident: ref45
  doi: 10.1016/j.compag.2024.109162
– volume: 32
  start-page: 350
  year: 2019
  ident: ref48
  article-title: Experience replay for continual learning
  publication-title: Adv. Neur. Inf. Process. Syst.
– ident: ref25
  doi: 10.1109/ACCESS.2023.3313725
– ident: ref33
  doi: 10.1109/tnnls.2023.3348422
– ident: ref9
  doi: 10.1007/s10489-020-01758-5
– ident: ref2
  doi: 10.1109/TCDS.2023.3287987
– volume: 80
  start-page: 4528
  volume-title: Int. Conf. Mach. Learn.
  year: 2018
  ident: ref49
  article-title: Progress and compress: A scalable framework for continual learning
– ident: ref47
  doi: 10.1145/3649921.3659844
– ident: ref13
  doi: 10.1093/logcom/exad032
– ident: ref26
  doi: 10.1109/TCDS.2022.3218940
– ident: ref43
  doi: 10.1016/j.ifacol.2023.10.1688
– ident: ref27
  doi: 10.1109/CoG52621.2021.9619131
– ident: ref6
  doi: 10.1007/s11042-023-14945-6
– ident: ref7
  doi: 10.1007/s11432-021-3347-8
– ident: ref46
  doi: 10.1007/978-3-642-20589-7_14
– ident: ref28
  doi: 10.1109/TPAMI.2022.3185549
– ident: ref36
  doi: 10.1109/TG.2020.3046133
– ident: ref39
  doi: 10.5220/0007257904110418
– ident: ref31
  doi: 10.1016/j.neucom.2022.10.058
– ident: ref34
  doi: 10.1260/147807708784640081
– ident: ref4
  doi: 10.1111/tops.12143
– ident: ref30
  doi: 10.1109/ICTAI59109.2023.00038
– ident: ref17
  doi: 10.1109/TCDS.2022.3231055
– ident: ref29
  doi: 10.1007/s10994-023-06311-2
– year: 2018
  ident: ref50
  article-title: Illuminating generalization in deep reinforcement learning through procedural level generation
– ident: ref42
  doi: 10.4271/2017-01-0237
– ident: ref3
  doi: 10.1145/3459991
– ident: ref19
  doi: 10.1073/pnas.1611835114
– ident: ref20
  doi: 10.1613/jair.1.13673
– ident: ref23
  doi: 10.1109/TCIAIG.2011.2158545
– ident: ref12
  doi: 10.1115/1.4046293
– volume-title: An Introduction
  year: 2018
  ident: ref1
  article-title: Reinforcement learning: An introduction
– issue: 11347
  year: 1803
  ident: ref5
  article-title: Learning to adapt: Meta-learning for model-based control
– ident: ref10
  doi: 10.1613/jair.1.14174
– ident: ref32
  doi: 10.1016/j.ins.2022.11.051
– ident: ref15
  doi: 10.1016/j.inffus.2019.12.004
– year: 2023
  ident: ref38
  article-title: Procedural Constraint-Based Generation for Game Development
– volume: 2214
  start-page: 2018
  volume-title: Proc. 33rd Italian Conf. Comput. Log.
  ident: ref44
  article-title: A decision support system for food recycling based on constraint logic programming and ontological reasoning
– ident: ref18
  doi: 10.1007/s10489-020-01786-1
– year: 2013
  ident: ref40
  article-title: Pattern-based constraint satisfaction and logic puzzles
SSID ssj0001637847
Score 2.3447504
Snippet In this article, we introduce a novel framework that combines constraint logic programming (CLP) with deep reinforcement learning (DRL) to create adaptive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 540
SubjectTerms Adaptive environments
Complexity
Complexity theory
constraint logic programming
Constraints
continual learning
Continuing education
Deep learning
Dynamic scheduling
Indexes
Logic
Logic programming
Problem solving
procedural content generation
Procedural generation
reinforcement learning
Schedules
Scheduling
Training
Trajectory
Title Adaptive Environment Generation for Continual Learning: Integrating Constraint Logic Programming With Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10736545
https://www.proquest.com/docview/3215953131
Volume 17
WOSCitedRecordID wos001502494600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA9uePDiaxOnU3IQD0K1TdKk8Tb2QEFEfKC30iRfdYfV4TrBo_-5Sdr5QDxILw1pS8ivyffI9_0-hA4AYhoqkgUhUXHARBwHirlIAKOtOu9kLPeJwhfi8jJ5eJBXdbK6z4UBAB98Bsfu1p_lm2c9d64yu8IF5VbkN1BDCFEla305VDgViS8oRqiQQSLJ4hQzCuXJbX9wY61Bwo4pS6yWTn7IIV9Y5ddu7EXMaO2fg1tHq7UuiXsV-BtoCYpN1OoV1o6evOFD7KM7vdu8hd57Jpu6rQ0Pv1LbcEU67bDBVnnFjqpq7DhKcU27-niKz2s-Cdtw_TNfU6LErkazxldVdNfEdd6Pyyc8AJjia_B0rNp7Hj8_1UZ3o-Ft_yyoyy8EmjBeBjRmJBRcKQOSgxSKgm1JmggdcxAZ4yS38t9ELA91bjUbnUnGmSFGZioPJd1CzeK5gG2EGU8SYJSZiOYszlTCTK7tFTlyHW6gg44WYKTTimUj9dZJKFOHXOqQS2vkOqjtZv_bg9XEd1B3gV9aL8RZSq1KI-0-Q6OdP17bRSvE1fT1npUuapYvc9hDy_q1HM9e9v0_9gH9CdCC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64gV7cxXHNQTwI1TZJk8bb4ILiOIiO6K20yavOYcbBqYJH_7lJ2nFBPEgvDWlDydfkLXnvewA7iDELc5oFIc3jgMs4DnLuIgGMtuq8k7HCJwq3ZLud3N-rqzpZ3efCIKIPPsN9d-vP8s2TfnGuMrvCJRNW5I_DZMztiFW61pdLRTCZ-JJilEkVJIqOzjGjUB10jo5vrD1I-T7jidXT6Q9J5Eur_NqPvZA5nfvn583DbK1NkmYF_wKMYX8Rlpp9a0n33sgu8fGd3nG-BO9Nkw3c5kZOvpLbSEU77dAhVn0ljqyq61hKSU28-nBIzmtGCdtw_UNfVaIkrkqzJldVfFfPdd51y0dyjDgg1-gJWbX3PX4OtQy3pyedo7OgLsAQaMpFGbCY01CKPDeoBCqZM7QtxRKpY4Ey44IWVgMwES9CXVjdRmeKC26oUVlehIqtwET_qY-rQLhIEuSMm4gVPM7yhJtC2yty9DrCYAP2RmCkg4pnI_X2SahSh1zqkEtr5Bqw7Gb_24PVxDdgY4RfWi_FYcqsUqPsTsOitT9e24bps85lK22dty_WYYa6Cr_ez7IBE-XzC27ClH4tu8PnLf-_fQD7StPJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Environment+Generation+for+Continual+Learning%3A+Integrating+Constraint+Logic+Programming+With+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Boutyour%2C+Youness&rft.au=Idrissi%2C+Abdellah&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=17&rft.issue=3&rft.spage=540&rft.epage=553&rft_id=info:doi/10.1109%2FTCDS.2024.3485482&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon