Evolutionary and metaheuristics based data mining
DM poses a great range of interesting (NP-hard) problems that consists mainly in searching for: the pattern/model that best describe the data, the more predictive subset of variables, the more accurate parameter configuration, etc. Because of this, and of the success obtained by metaheuristics when...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 13; H. 3; S. 209 - 212 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer-Verlag
01.02.2009
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | DM poses a great range of interesting (NP-hard) problems that consists mainly in searching for: the pattern/model that best describe the data, the more predictive subset of variables, the more accurate parameter configuration, etc. Because of this, and of the success obtained by metaheuristics when applied to other combinatorial/numerical optimization problems, metaheuristics have been widely applied to solve DM problems during the last years. [...]the use of evolutionary algorithms and metaheuristics in general to approach DM-based problems (EMBDM) is a hot topic of research nowadays. [...]there is a very active related field of research known as learning classifier systems (LCS) (Bull et al. 2002) that learns the rule-based classifier by combining evolutionary algorithms with reinforcement learning. In descriptive data mining there is no class variable so we are in an unsupervised setting. [...]the goal now is not to predict a target value, but to discover intrinsic relations, dependences, etc. of the data. On the contrary of Bayesian networks that represent a global (in)dependence model among all the variables, association rules can be viewed as a set of separate dependence sentences, where each rule stands for the dependence relation between the variables in the antecedent and the one in the consequent. Because different measures (e.g. support, confidence, interestingness) are used to evaluate a the goodness of a rule, the multiobjective approach has shown to be a good tool to deal with it (Ghosh and Nath 2004). |
|---|---|
| AbstractList | DM poses a great range of interesting (NP-hard) problems that consists mainly in searching for: the pattern/model that best describe the data, the more predictive subset of variables, the more accurate parameter configuration, etc. Because of this, and of the success obtained by metaheuristics when applied to other combinatorial/numerical optimization problems, metaheuristics have been widely applied to solve DM problems during the last years. [...]the use of evolutionary algorithms and metaheuristics in general to approach DM-based problems (EMBDM) is a hot topic of research nowadays. [...]there is a very active related field of research known as learning classifier systems (LCS) (Bull et al. 2002) that learns the rule-based classifier by combining evolutionary algorithms with reinforcement learning. In descriptive data mining there is no class variable so we are in an unsupervised setting. [...]the goal now is not to predict a target value, but to discover intrinsic relations, dependences, etc. of the data. On the contrary of Bayesian networks that represent a global (in)dependence model among all the variables, association rules can be viewed as a set of separate dependence sentences, where each rule stands for the dependence relation between the variables in the antecedent and the one in the consequent. Because different measures (e.g. support, confidence, interestingness) are used to evaluate a the goodness of a rule, the multiobjective approach has shown to be a good tool to deal with it (Ghosh and Nath 2004). |
| Author | Puerta, José M. del Jesús, María J. Gámez, José A. |
| Author_xml | – sequence: 1 givenname: María J. surname: del Jesús fullname: del Jesús, María J. organization: Computer Science Department, University of Jaén – sequence: 2 givenname: José A. surname: Gámez fullname: Gámez, José A. organization: Computing Systems Department, University of Castilla-La Mancha – sequence: 3 givenname: José M. surname: Puerta fullname: Puerta, José M. email: jpuerta@dsi.uclm.es organization: Computing Systems Department, University of Castilla-La Mancha |
| BookMark | eNp9kMtKAzEUhoNUsK0-gLsB19GTZDLJLKXUCxTc6DokmUxNmWZqkhF8e6eOIAi6Omfxf-fyLdAs9MEhdEngmgCImwTAATCAxMAEw-QEzUnJGBalqGdfPcWiKtkZWqS0A6BEcDZHZP3ed0P2fdDxo9ChKfYu61c3RJ-yt6kwOrmmaHTWxd4HH7bn6LTVXXIX33WJXu7Wz6sHvHm6f1zdbrClZZUxtdQSy2teW1bWQjYShG7BETBUGkudAyNbWlXGGSt4YwxrK9a0oGVFrGFsia6muYfYvw0uZbXrhxjGlYrWRMi6ppyPKTGlbOxTiq5V1md9_CdH7TtFQB39qMmPGv2oox9FRpL8Ig_R70cL_zJ0YtKYDVsXf276G_oEdJ95IA |
| CitedBy_id | crossref_primary_10_1002_widm_1078 crossref_primary_10_1002_widm_1106 crossref_primary_10_1016_j_asoc_2015_09_050 crossref_primary_10_1002_widm_18 |
| Cites_doi | 10.1023/A:1007677805582 10.1016/j.neucom.2005.12.014 10.1109/3477.907563 10.1109/TEVC.2002.806857 10.1109/TEVC.2005.859371 10.1109/TPAMI.2004.105 10.1016/S0167-8655(99)00057-4 10.1109/TFUZZ.2007.900904 10.1007/s10710-005-2988-7 10.1016/S0888-613X(02)00091-9 10.1142/S0218488507004868 10.1016/j.ins.2003.03.021 10.1016/j.ejor.2004.08.012 10.1007/s00500-006-0128-9 10.1109/TSMCB.2002.805696 10.1016/j.patcog.2008.02.006 10.1142/4177 10.1007/s005000100110 10.3233/IDA-2007-11506 10.1007/978-1-4615-1539-5 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag 2008 Springer-Verlag 2008. |
| Copyright_xml | – notice: Springer-Verlag 2008 – notice: Springer-Verlag 2008. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-008-0373-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: ProQuest advanced technologies & aerospace journals url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 212 |
| ExternalDocumentID | 10_1007_s00500_008_0373_1 |
| Genre | Commentary Editorial |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c246t-2c2c1c5959c34978d807af0e10b28bc2ee0b8f266bebc75dbb3f63df0a861cb33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260518500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 02:22:12 EST 2025 Tue Nov 18 21:27:16 EST 2025 Sat Nov 29 03:19:43 EST 2025 Fri Feb 21 02:40:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-2c2c1c5959c34978d807af0e10b28bc2ee0b8f266bebc75dbb3f63df0a861cb33 |
| Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Editorial-2 ObjectType-Commentary-1 |
| PQID | 2917899255 |
| PQPubID | 2043697 |
| PageCount | 4 |
| ParticipantIDs | proquest_journals_2917899255 crossref_citationtrail_10_1007_s00500_008_0373_1 crossref_primary_10_1007_s00500_008_0373_1 springer_journals_10_1007_s00500_008_0373_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20090200 2009-2-00 20090201 |
| PublicationDateYYYYMMDD | 2009-02-01 |
| PublicationDate_xml | – month: 2 year: 2009 text: 20090200 |
| PublicationDecade | 2000 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2009 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | Lozano, Larrañaga (CR15) 1999; 20 de Campos, Fernández-Luna, Gámez, Puerta (CR8) 2002; 31 Michalski (CR17) 2000; 38 CR3 Ma, Chan, Yao, Chiu (CR16) 2006; 10 Oh, Lee, Moon (CR20) 2004; 26 Aguilar-Ruiz, Riquelme Santos, Toro (CR1) 2003; 33 Casillas, Carse, Bull (CR5) 2001; 15 CR12 Liu, Chen, Tsao (CR19) 2001; 31 Alcalá, Gacto, Herrera, Alcalá-Fdez (CR2) 2007; 15 Cantú-Paz, Kamath (CR4) 2003; 7 Flores, Inza, Larrañaga (CR11) 2007; 11 Ghosh, Nath (CR13) 2004; 163 Ishibuchi, Nakashima, Nii (CR14) 2004 Chandra, Yao (CR6) 2006; 69 Rivera, Rojas, Ortega, del Jesús (CR21) 2007; 11 Larrañaga, Lozano (CR18) 2002 Fayyad, Piatetsky-Shapiro, Smyth (CR10) 1996; 17 Cordón, Herrera, Hoffmann, Magdalena (CR7) 2001 Smith, Bull (CR22) 2005; 6 El-Fallahi, Martí, Lasdon (CR9) 2006; 169 O Cordón (373_CR7) 2001 RS Michalski (373_CR17) 2000; 38 AJ Rivera (373_CR21) 2007; 11 MG Smith (373_CR22) 2005; 6 A Chandra (373_CR6) 2006; 69 H Ishibuchi (373_CR14) 2004 JA Lozano (373_CR15) 1999; 20 373_CR3 BD Liu (373_CR19) 2001; 31 JS Aguilar-Ruiz (373_CR1) 2003; 33 P Larrañaga (373_CR18) 2002 LM Campos de (373_CR8) 2002; 31 R Alcalá (373_CR2) 2007; 15 PCH Ma (373_CR16) 2006; 10 J Casillas (373_CR5) 2001; 15 373_CR12 A Ghosh (373_CR13) 2004; 163 I-S Oh (373_CR20) 2004; 26 E Cantú-Paz (373_CR4) 2003; 7 A El-Fallahi (373_CR9) 2006; 169 U Fayyad (373_CR10) 1996; 17 JL Flores (373_CR11) 2007; 11 |
| References_xml | – volume: 38 start-page: 9 issue: 1–2 year: 2000 end-page: 40 ident: CR17 article-title: Learnable evolution model: evolutionary processes guided by machine learning publication-title: Mach Learn doi: 10.1023/A:1007677805582 – volume: 69 start-page: 686 issue: 7–9 year: 2006 end-page: 700 ident: CR6 article-title: Evolving hybrid ensembles of learning machines for better generalisation publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.014 – volume: 31 start-page: 32 issue: 1 year: 2001 end-page: 53 ident: CR19 article-title: Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/3477.907563 – ident: CR3 – volume: 7 start-page: 54 issue: 1 year: 2003 end-page: 68 ident: CR4 article-title: Inducing oblique decision trees with evolutionary algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.806857 – volume: 10 start-page: 296 issue: 3 year: 2006 end-page: 314 ident: CR16 article-title: An evolutionary clustering algorithm for gene expression microarray data analysis publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.859371 – volume: 26 start-page: 1424 issue: 11 year: 2004 end-page: 1437 ident: CR20 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.105 – ident: CR12 – volume: 20 start-page: 911 issue: 9 year: 1999 end-page: 918 ident: CR15 article-title: Applying genetic algorithms to search for the best hierarchical clustering of a dataset publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(99)00057-4 – year: 2004 ident: CR14 publication-title: Classification and modeling with linguistic information granules: advanced approaches to linguistic data mining – volume: 15 start-page: 536 issue: 4 year: 2001 end-page: 550 ident: CR5 article-title: Fuzzy-XCS: a Michigan genetic fuzzy system publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2007.900904 – volume: 11 start-page: 525 issue: 5 year: 2007 end-page: 545 ident: CR11 article-title: Wrapper discretization by means of estimation of distribution algorithms publication-title: Intell Data Anal – volume: 6 start-page: 265 issue: 3 year: 2005 end-page: 281 ident: CR22 article-title: Genetic programming with a genetic algorithm for feature construction and selection publication-title: Genet Program Evolvable Mach doi: 10.1007/s10710-005-2988-7 – volume: 31 start-page: 291 issue: 3 year: 2002 end-page: 311 ident: CR8 article-title: Ant colony optimization for learning bayesian networks publication-title: Int J Approx Reason doi: 10.1016/S0888-613X(02)00091-9 – volume: 15 start-page: 539 issue: 5 year: 2007 end-page: 557 ident: CR2 article-title: A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems publication-title: Int J Uncertain Fuzziness Knowl Based Syst doi: 10.1142/S0218488507004868 – volume: 17 start-page: 37 year: 1996 end-page: 54 ident: CR10 article-title: From data mining to knowledge discovery in databases. publication-title: AI Mag – volume: 163 start-page: 123 issue: 1–3 year: 2004 end-page: 133 ident: CR13 article-title: Multi-objective rule mining using genetic algorithms publication-title: Inf Sci doi: 10.1016/j.ins.2003.03.021 – year: 2001 ident: CR7 publication-title: Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases – year: 2002 ident: CR18 publication-title: Estimation of distribution algorithms: a new tool for evolutionary computation – volume: 169 start-page: 508 issue: 2 year: 2006 end-page: 519 ident: CR9 article-title: Path relinking and grg for artificial neural networks publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2004.08.012 – volume: 11 start-page: 655 issue: 7 year: 2007 end-page: 668 ident: CR21 article-title: A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks publication-title: Soft Comput doi: 10.1007/s00500-006-0128-9 – volume: 33 start-page: 324 issue: 2 year: 2003 end-page: 331 ident: CR1 article-title: Evolutionary learning of hierarchical decision rules publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2002.805696 – volume: 7 start-page: 54 issue: 1 year: 2003 ident: 373_CR4 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.806857 – volume: 38 start-page: 9 issue: 1–2 year: 2000 ident: 373_CR17 publication-title: Mach Learn doi: 10.1023/A:1007677805582 – ident: 373_CR12 doi: 10.1016/j.patcog.2008.02.006 – volume: 31 start-page: 32 issue: 1 year: 2001 ident: 373_CR19 publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/3477.907563 – volume: 26 start-page: 1424 issue: 11 year: 2004 ident: 373_CR20 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.105 – volume-title: Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases year: 2001 ident: 373_CR7 doi: 10.1142/4177 – volume-title: Classification and modeling with linguistic information granules: advanced approaches to linguistic data mining year: 2004 ident: 373_CR14 – volume: 69 start-page: 686 issue: 7–9 year: 2006 ident: 373_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.014 – volume: 169 start-page: 508 issue: 2 year: 2006 ident: 373_CR9 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2004.08.012 – volume: 17 start-page: 37 year: 1996 ident: 373_CR10 publication-title: AI Mag – ident: 373_CR3 doi: 10.1007/s005000100110 – volume: 10 start-page: 296 issue: 3 year: 2006 ident: 373_CR16 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.859371 – volume: 11 start-page: 525 issue: 5 year: 2007 ident: 373_CR11 publication-title: Intell Data Anal doi: 10.3233/IDA-2007-11506 – volume: 163 start-page: 123 issue: 1–3 year: 2004 ident: 373_CR13 publication-title: Inf Sci doi: 10.1016/j.ins.2003.03.021 – volume: 15 start-page: 539 issue: 5 year: 2007 ident: 373_CR2 publication-title: Int J Uncertain Fuzziness Knowl Based Syst doi: 10.1142/S0218488507004868 – volume: 20 start-page: 911 issue: 9 year: 1999 ident: 373_CR15 publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(99)00057-4 – volume: 6 start-page: 265 issue: 3 year: 2005 ident: 373_CR22 publication-title: Genet Program Evolvable Mach doi: 10.1007/s10710-005-2988-7 – volume-title: Estimation of distribution algorithms: a new tool for evolutionary computation year: 2002 ident: 373_CR18 doi: 10.1007/978-1-4615-1539-5 – volume: 11 start-page: 655 issue: 7 year: 2007 ident: 373_CR21 publication-title: Soft Comput doi: 10.1007/s00500-006-0128-9 – volume: 15 start-page: 536 issue: 4 year: 2001 ident: 373_CR5 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2007.900904 – volume: 31 start-page: 291 issue: 3 year: 2002 ident: 373_CR8 publication-title: Int J Approx Reason doi: 10.1016/S0888-613X(02)00091-9 – volume: 33 start-page: 324 issue: 2 year: 2003 ident: 373_CR1 publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2002.805696 |
| SSID | ssj0021753 |
| Score | 1.8437972 |
| Snippet | DM poses a great range of interesting (NP-hard) problems that consists mainly in searching for: the pattern/model that best describe the data, the more... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 209 |
| SubjectTerms | Artificial Intelligence Bayesian analysis Classification Classifiers Clustering Combinatorial analysis Computational Intelligence Control Data mining Dependence Editorial Engineering Evolutionary algorithms Fuzzy sets Genetic algorithms Heuristic methods Machine learning Mathematical Logic and Foundations Mechatronics Neural networks Optimization Robotics Variables |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60evBifWK1Sg6elMVss4_sSURaPJUeFIqXJY9ZFOy2ttuC_94kzbYo2Iu3hd2EZWaSmclMvg_gOhXGiSuT5CQURRDxggaZMFmKoIiMR4prQR3ZRNrv8-EwG_gDt5lvq6z3RLdR67GyZ-R3HZNXmNzARMD3k8_AskbZ6qqn0NiGHYuSYKkbBvHrKuHyKJQmJDBRpHG9dVWTOhDR2N2pthfMUhaEP_3SOtj8VR91bqfX_O8PH8C-DzjJw9JCDmELyyNo1mQOxK_tYwi7C2-FYvpFRKnJCCvxhnMP5Uysv9PEdpSSkWOVOIGXXvf58SnwfAqB6kRJFRidqFDFWZwpZonlNKepKCiGVHa4VB1EKnlhPLZEqdJYS8mKhOmCCp6ESjJ2Co1yXOIZEDMgyqJIhtLmbygFTRCVedKpEAyxBbSWZq482LjlvPjIVzDJTgG5I8E0CsjDFtyshkyWSBubPm7XQs_9opvla4m34LZW2_r1n5Odb57sAvaWJSTbw9KGRjWd4yXsqkX1PpteOYv7Bmcn2zw priority: 102 providerName: ProQuest |
| Title | Evolutionary and metaheuristics based data mining |
| URI | https://link.springer.com/article/10.1007/s00500-008-0373-1 https://www.proquest.com/docview/2917899255 |
| Volume | 13 |
| WOSCitedRecordID | wos000260518500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1433-7479 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1433-7479 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB20etCD1apYrSUHT0pg8705qrQIQin1g-Il7G4mKNgobVrw3zubbloVFfQSAtkNYT_y5jE77wGcRIJAXBHJCRkK2-cZs2NBLEUwRI_7iqeClWYTUa_Hh8O4b-q4J9Vp9yolWf6pF8VuWqpEV0HrkrDIs4nyrBHace3XMLi5X7AsIz1JcQCFjoS3VSrzu1d8BqNlhPklKVpiTbf-r6_chi0TWlrn87WwAyuYN6Be2TZYZhc3YPODBuEuOJ2ZWX1i_GaJPLVGWIhHnBoJZ0vjXGrpk6TWqHST2IO7buf28so2Pgq2cv2wsGkulKOCOIiVpw3lUs4ikTF0mHS5VC4ikzwjpJYoVRSkUnpZ6KUZEzx0lPS8fajlLzkegEUd_Nj3pSM1b0MpWIio6C6NhPAQm8CqAU2UERnXXhfPyUIeuRygpDS_pAFKnCacLrq8zhU2fmvcqmYpMZttkrhEOYk2Ejlqwlk1K8vHP77s8E-tj2BjnknSR1laUCvGUzyGdTUrnibjNqxddHr9QRtWryObrv3goV2uy3dQltgj |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5KFfTiW6zPPehFCW4eTTYHEfGB0lo8KPQWdzcTFGzUtir-KX-js9ukRcHeevAWSHZZMrMz8-3MzgewG0ly4ppATshROoHIuBNLQimSI_oi0CKV3JJNRK2WaLfjmwp8lXdhTFllaROtoU6ftTkjP_QIVxA2oAj4-OXVMaxRJrtaUmgM1KKBnx8E2XpHV2ck3z3Puzi_Pb10ClYBR3tB2HdoZdrV9bgea9_Qq6WCRzLj6HLlCaU9RK5ERn5LodJRPVXKz0I_zbgUoauVOQAlkz8V-CIy-6oROUOAV3S9pBCEolZy9WUWldumpXV7h9tcaIt8x_3pB0fB7a98rHVzF_P_7QctwFwRULOTwQ5YhArmSzBfklWwwnYtg3v-Xuwy2f1kMk9ZB_vyAd-KVtXM-POUmYpZ1rGsGStwN5GFr0I1f85xDRgNCOIgUK4y-BSV5CGipqc0ktJHrAEvpZfoopm64fR4SoZtoK3AE0vySQJP3BrsD4e8DDqJjPt4sxRyUhiVXjKScA0OSjUZvf5zsvXxk-3AzOXtdTNpXrUaGzA7SJeZep1NqPa7b7gF0_q9_9jrblttZ3A_ae35BlboObY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5kiuiD06k4ndoHn5SytOna9FF0Q1HGwB_srSTpFQVXx9YN_O9N2rRTUUF8K-QHJZdw93F33wdwEnDlxKUCOT5BbnssIXbIFUrhBJEyT7KYk1xsIuj32XAYDozO6bSsdi9TkkVPg2ZpSrP2OE7aVeObpi3RHdG6PSygtoI_y56uo9dw_e6xQlyGhlLFBCqMVL63TGt-t8Vnx7SINr8kSHO_06v_-483YcOEnNZ5cUe2YAnTBtRLOQfLvO4GrH_gJtwGpzs3t5JP3iyextYIM_6EM0PtbGn_F1u6wtQa5SoTO_DQ695fXNlGX8GWrudntrKRdGQn7ISSaqG5mJGAJwQdIlwmpItIBEuUBxcoZNCJhaCJT-OEcOY7UlC6C7X0NcU9sNQCL_Q84QiN51Bw4iNK9RUHnFPEJpDycCNpyMe1BsZLVNEm5wcU5aKY6oAipwmn1ZJxwbzx2-RWabHIPMJp5CooquCkAk1NOCsttBj-cbP9P80-htXBZS-6ve7fHMBakWzS1S4tqGWTGR7Cipxnz9PJUX413wEnsuCB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+and+metaheuristics+based+data+mining&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=del+Jes%C3%BAs%2C+Mar%C3%ADa+J.&rft.au=G%C3%A1mez%2C+Jos%C3%A9+A.&rft.au=Puerta%2C+Jos%C3%A9+M.&rft.date=2009-02-01&rft.pub=Springer-Verlag&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=13&rft.issue=3&rft.spage=209&rft.epage=212&rft_id=info:doi/10.1007%2Fs00500-008-0373-1&rft.externalDocID=10_1007_s00500_008_0373_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |