GPSCO: Global Planar Structural Constraint Optimal-Based Point Cloud Registration Algorithm for Repetitive Structures
3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous studies have presented a series of point cloud registration algorithms with diverse efficiencies and accuracies. However, registering point clou...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 15 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | 3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous studies have presented a series of point cloud registration algorithms with diverse efficiencies and accuracies. However, registering point clouds with repetitive structures is still challenging. In this study, we propose the global planar structural constraint optimal (GPSCO)-based algorithm, which is specifically designed to handle the registration of repetitive structures. Its novelty lies in establishing the geometric constraint of multiple planes and registering based on the global optimal geometric constraint. The specific algorithm involves clustering the parallel planes into plane groups, estimating matching scores between plane groups, and selecting three corresponding pairs of nonparallel plane groups to form the plane structural constraint. The transformation matrix determined in the case of the optimal structural constraint is taken as the final result. The two terrestrial LiDAR datasets (HS1 and HS2) of real scenes with repetitive structures were collected to evaluate the GPSCO algorithm. Additionally, the GPSCO algorithm is validated on four public benchmark datasets, such as Whu-Park, Whu-Campus, ETH-Hauptgebaude, and ETH-Stairs. The registration results demonstrate that the GPSCO algorithm achieves 95.65%, 86.36%, 100%, 100%, 100%, and 88.89% successful registration rates (SRRs) on the six datasets, respectively, and significantly outperforms the existing methods on HS1 and HS2 with repetitive structures. The corresponding datasets and code are available at [ https://github.com/fog223/GPSCO ]. |
|---|---|
| AbstractList | 3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous studies have presented a series of point cloud registration algorithms with diverse efficiencies and accuracies. However, registering point clouds with repetitive structures is still challenging. In this study, we propose the global planar structural constraint optimal (GPSCO)-based algorithm, which is specifically designed to handle the registration of repetitive structures. Its novelty lies in establishing the geometric constraint of multiple planes and registering based on the global optimal geometric constraint. The specific algorithm involves clustering the parallel planes into plane groups, estimating matching scores between plane groups, and selecting three corresponding pairs of nonparallel plane groups to form the plane structural constraint. The transformation matrix determined in the case of the optimal structural constraint is taken as the final result. The two terrestrial LiDAR datasets (HS1 and HS2) of real scenes with repetitive structures were collected to evaluate the GPSCO algorithm. Additionally, the GPSCO algorithm is validated on four public benchmark datasets, such as Whu-Park, Whu-Campus, ETH-Hauptgebaude, and ETH-Stairs. The registration results demonstrate that the GPSCO algorithm achieves 95.65%, 86.36%, 100%, 100%, 100%, and 88.89% successful registration rates (SRRs) on the six datasets, respectively, and significantly outperforms the existing methods on HS1 and HS2 with repetitive structures. The corresponding datasets and code are available at [ https://github.com/fog223/GPSCO ]. |
| Author | Wu, Xiaoyang Wang, Cheng Yang, Xuebo Li, Dong Luo, Chengwen Tang, Hao |
| Author_xml | – sequence: 1 givenname: Chengwen orcidid: 0009-0000-3505-3936 surname: Luo fullname: Luo, Chengwen email: luochengwen22@mails.ucas.ac.cn organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Dong orcidid: 0009-0005-3206-7917 surname: Li fullname: Li, Dong email: lidong@aircas.ac.cn organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Xuebo orcidid: 0000-0002-0949-0179 surname: Yang fullname: Yang, Xuebo email: yangxb@aircas.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Cheng surname: Wang fullname: Wang, Cheng organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Xiaoyang orcidid: 0009-0001-6851-0395 surname: Wu fullname: Wu, Xiaoyang organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Hao surname: Tang fullname: Tang, Hao organization: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, China |
| BookMark | eNpNkF9LwzAUxYMouE0_gOBDwOfO_E_q2yxahcHGNp9Lmmazo2tmkgp-e1s2xKcL555zLvc3Bpetay0AdxhNMUbp4yZfracEETaljGCB5AUYYc5VggRjl2CEcCoSolJyDcYh7BHCjGM5Al2-XGeLJ5g3rtQNXDa61R6uo-9M7HyvZK4N0eu6jXBxjPVBN8mzDraCSzdoWeO6Cq7srh5csXYtnDU75-v4eYBb5_vV0cY61t_2r9WGG3C11U2wt-c5AR-vL5vsLZkv8vdsNk8MYSImRBpDOUeGKWIVkVUltBUs1bQUqORYI0mI0FRIwyoqmFUyrYximipESpPSCXg49R69--psiMXedb7tTxYUKYa4TBnvXfjkMt6F4O22OPr-Uf9TYFQMdIuBbjHQLc50-8z9KVNba__5uWIUY_oLBHx4lg |
| CODEN | IGRSD2 |
| Cites_doi | 10.1016/j.isprsjprs.2023.09.008 10.1145/361002.361007 10.1016/j.isprsjprs.2017.10.001 10.1016/j.isprsjprs.2007.05.002 10.1016/j.jvcir.2013.04.001 10.1145/1399504.1360684 10.1007/978-3-031-20077-9_16 10.1109/TGRS.2022.3208380 10.1109/CVPR52688.2022.01287 10.15607/RSS.2009.V.021 10.1117/12.57955 10.1016/j.isprsjprs.2020.03.013 10.1109/TGRS.2021.3128403 10.1109/TGRS.2019.2952086 10.1109/CVPR52688.2022.01086 10.1016/j.isprsjprs.2011.09.010 10.1109/TPAMI.2015.2513405 10.5194/isprsannals-II-5-W2-283-2013 10.5194/isprs-annals-IV-2-W4-185-2017 10.1109/ROBOT.2009.5152473 10.1109/IROS.2008.4650967 10.1016/j.isprsjprs.2006.06.001 10.1111/j.1467-8659.2007.01016.x 10.1109/IROS.2012.6386185 10.1109/ICRA.2014.6907776 10.1109/CVPR52729.2023.01702 10.1016/j.isprsjprs.2015.11.001 10.1109/ICCV.2019.00905 10.1016/j.robot.2021.103999 10.1016/j.isprsjprs.2022.04.017 10.1016/j.isprsjprs.2020.01.009 10.1016/j.isprsjprs.2014.05.012 10.1109/IROS.2003.1249285 10.1109/ROBOT.2008.4543181 10.1016/j.cviu.2014.04.011 10.1177/0278364912458814 10.1109/CVPR.2017.16 10.1109/CVPR46437.2021.00425 10.1109/CVPR52688.2022.00626 10.1016/j.isprsjprs.2019.04.004 10.1109/CVPR42600.2020.00639 10.1109/ICRA48506.2021.9560835 10.1109/ICCV.2019.00651 10.1016/j.isprsjprs.2017.04.001 10.1109/CVPR.2015.7298781 10.1109/TGRS.2023.3317822 10.1016/j.isprsjprs.2015.01.011 10.1007/978-3-319-46475-6_47 10.1145/358669.358692 10.1016/j.isprsjprs.2022.07.006 10.1016/j.isprsjprs.2005.02.006 10.1145/3326362 10.1109/ICCVW.2009.5457637 10.1111/cgf.12446 10.1109/CVPR46437.2021.01016 10.1016/j.isprsjprs.2019.02.015 10.1016/j.isprsjprs.2017.06.012 10.1109/TGRS.2021.3091380 10.1016/j.isprsjprs.2006.09.006 10.1007/s00371-011-0610-y 10.1016/j.isprsjprs.2015.12.005 10.1109/ICRA.2017.7989664 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3421607 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TGRS_2024_3421607 10584311 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research and Development Project of “Jianbing” “Lingyan” of Zhejiang Province grantid: 2023C03190 – fundername: Science and Disruptive Technology Program of AIRCAS funderid: 10.13039/501100018556 – fundername: National Natural Science Foundation of China grantid: 42201380; U22A20566 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c246t-27cc3550c482e827dd6ae649a3b60b51a07226a367c4d364e879dc84a3802bc93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001276870500041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:36:26 EDT 2025 Sat Nov 29 03:32:38 EST 2025 Wed Aug 27 02:02:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-27cc3550c482e827dd6ae649a3b60b51a07226a367c4d364e879dc84a3802bc93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-3206-7917 0000-0002-0949-0179 0009-0000-3505-3936 0009-0001-6851-0395 |
| PQID | 3084057945 |
| PQPubID | 85465 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10584311 proquest_journals_3084057945 crossref_primary_10_1109_TGRS_2024_3421607 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref52 ref11 ref55 ref10 ref54 ref17 Dold (ref46) 2004; 35 ref16 ref19 ref18 ref51 ref50 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Von Hansen (ref43) 2008; 37 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Qi (ref26); 30 Dold (ref53) 2006; 5 Dijkman (ref64) 2002; 34 ref24 ref23 ref67 ref25 ref20 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref2 doi: 10.1016/j.isprsjprs.2023.09.008 – ident: ref29 doi: 10.1145/361002.361007 – ident: ref39 doi: 10.1016/j.isprsjprs.2017.10.001 – ident: ref47 doi: 10.1016/j.isprsjprs.2007.05.002 – ident: ref49 doi: 10.1016/j.jvcir.2013.04.001 – ident: ref34 doi: 10.1145/1399504.1360684 – ident: ref44 doi: 10.1007/978-3-031-20077-9_16 – ident: ref8 doi: 10.1109/TGRS.2022.3208380 – ident: ref32 doi: 10.1109/CVPR52688.2022.01287 – ident: ref11 doi: 10.15607/RSS.2009.V.021 – ident: ref9 doi: 10.1117/12.57955 – ident: ref40 doi: 10.1016/j.isprsjprs.2020.03.013 – ident: ref57 doi: 10.1109/TGRS.2021.3128403 – ident: ref54 doi: 10.1109/TGRS.2019.2952086 – ident: ref7 doi: 10.1109/CVPR52688.2022.01086 – volume: 35 start-page: 1091 year: 2004 ident: ref46 article-title: Automatic matching of terrestrial scan data as a basis for the generation of detailed 3D city models publication-title: Int. Arch. Photogramm. Remote Sens. – ident: ref18 doi: 10.1016/j.isprsjprs.2011.09.010 – ident: ref12 doi: 10.1109/TPAMI.2015.2513405 – ident: ref35 doi: 10.5194/isprsannals-II-5-W2-283-2013 – ident: ref56 doi: 10.5194/isprs-annals-IV-2-W4-185-2017 – ident: ref21 doi: 10.1109/ROBOT.2009.5152473 – ident: ref20 doi: 10.1109/IROS.2008.4650967 – ident: ref62 doi: 10.1016/j.isprsjprs.2006.06.001 – ident: ref45 doi: 10.1111/j.1467-8659.2007.01016.x – ident: ref16 doi: 10.1109/IROS.2012.6386185 – ident: ref51 doi: 10.1109/ICRA.2014.6907776 – ident: ref33 doi: 10.1109/CVPR52729.2023.01702 – ident: ref63 doi: 10.1016/j.isprsjprs.2015.11.001 – ident: ref24 doi: 10.1109/ICCV.2019.00905 – ident: ref1 doi: 10.1016/j.robot.2021.103999 – ident: ref59 doi: 10.1016/j.isprsjprs.2022.04.017 – ident: ref50 doi: 10.1016/j.isprsjprs.2020.01.009 – volume: 5 start-page: 78 year: 2006 ident: ref53 article-title: Registration of terrestrial laser scanning data using planar patches and image data publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – ident: ref60 doi: 10.1016/j.isprsjprs.2014.05.012 – ident: ref15 doi: 10.1109/IROS.2003.1249285 – volume: 30 start-page: 5099 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space – ident: ref10 doi: 10.1109/ROBOT.2008.4543181 – ident: ref22 doi: 10.1016/j.cviu.2014.04.011 – ident: ref67 doi: 10.1177/0278364912458814 – ident: ref25 doi: 10.1109/CVPR.2017.16 – ident: ref6 doi: 10.1109/CVPR46437.2021.00425 – ident: ref52 doi: 10.1109/CVPR52688.2022.00626 – ident: ref41 doi: 10.1016/j.isprsjprs.2019.04.004 – ident: ref5 doi: 10.1109/CVPR42600.2020.00639 – ident: ref13 doi: 10.1109/ICRA48506.2021.9560835 – ident: ref28 doi: 10.1109/ICCV.2019.00651 – ident: ref4 doi: 10.1016/j.isprsjprs.2017.04.001 – ident: ref66 doi: 10.1109/CVPR.2015.7298781 – ident: ref14 doi: 10.1109/TGRS.2023.3317822 – ident: ref48 doi: 10.1016/j.isprsjprs.2015.01.011 – ident: ref31 doi: 10.1007/978-3-319-46475-6_47 – ident: ref30 doi: 10.1145/358669.358692 – ident: ref3 doi: 10.1016/j.isprsjprs.2022.07.006 – ident: ref61 doi: 10.1016/j.isprsjprs.2005.02.006 – ident: ref27 doi: 10.1145/3326362 – ident: ref17 doi: 10.1109/ICCVW.2009.5457637 – ident: ref36 doi: 10.1111/cgf.12446 – ident: ref38 doi: 10.1109/CVPR46437.2021.01016 – volume: 37 start-page: 161 year: 2008 ident: ref43 article-title: Line-based registration of terrestrial and airborne LiDAR data publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – ident: ref58 doi: 10.1016/j.isprsjprs.2019.02.015 – ident: ref23 doi: 10.1016/j.isprsjprs.2017.06.012 – ident: ref55 doi: 10.1109/TGRS.2021.3091380 – ident: ref65 doi: 10.1016/j.isprsjprs.2006.09.006 – ident: ref19 doi: 10.1007/s00371-011-0610-y – ident: ref42 doi: 10.1016/j.isprsjprs.2015.12.005 – ident: ref37 doi: 10.1109/ICRA.2017.7989664 – volume: 34 start-page: 12 issue: 5 year: 2002 ident: ref64 article-title: Semi automatic registration of laser scanner data publication-title: Int. Arch. Photogramm. REMOTE Sens. Spat. Inf. Sci. |
| SSID | ssj0014517 |
| Score | 2.4362223 |
| Snippet | 3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 3-D point cloud Algorithms Benchmark testing Clustering Clustering algorithms Computer vision Datasets Feature extraction Geometric constraints Image reconstruction Image registration Lidar Object recognition Pattern recognition plane constraint Planes Point cloud compression Registration Remote sensing Repetitive structures Structures Three dimensional models Three-dimensional displays Transmission line matrix methods Vectors |
| Title | GPSCO: Global Planar Structural Constraint Optimal-Based Point Cloud Registration Algorithm for Repetitive Structures |
| URI | https://ieeexplore.ieee.org/document/10584311 https://www.proquest.com/docview/3084057945 |
| Volume | 62 |
| WOSCitedRecordID | wos001276870500041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA46KOjBXRw3cvAkRNMmzeJNB5eD6OCoeCtp8mYUxukwi7_fJK2DIh68lTYN5b3mLXl534fQkeTWQdcwQoE6wqVyRPHEEJckRivGVRb5U55v5d2dennR7bpZPfbCAEA8fAYn4TLW8l1pp2GrzK9w7y5Z6OSdl1JUzVqzkgHPkro3WhCfRaR1CTOh-vTx-qHjU8GUnzCeBkS1H04osqr8MsXRv1yt_vPL1tBKHUji80rz62gOBhto-Ru84AZajMc77XgTTa_bndb9Ga4Q_nFgKjIj3InYsQF3AwfezsgWMcH33oi8mz658P7N4XYZ7rX65dThB-jNYHbxeb9Xjt4mr-_Yh73-0TC0q3nTOZsVxlvo6erysXVDasIFYlMuJiSV1vr4g1quUlCpdE4YEFwbVghaZImh0kdrhglpuWOCg5LaWcUNUzQtrGbbqDEoB7CDsIZuUiQFE4UPuAL6bWahG8D_wFJV6G4THX9pIB9WuBp5zEeozoO68qCuvFZXE20FkX8bWEm7ifa_lJbXS2-cM6pCEKp5tvvHa3toKcxebaTso4YXCxygBfsxeRuPDuNf9QnpdMp5 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hFgQcgIYiAgV86AnJwWt7d21uJaItIqRRk6LeVl57kkZKslEe_f3Y3m3UCnHgttqnNbOe-cbj-QbgOJfW4dgIypA5KnPlqJKJoS5JjFZCqjT2T_ndy_t9dX2tB02xeqyFQcS4-Qw74TDm8l1lt2GpzM9w7y5FqOTdT6XkrC7X2iUNZJo01dEZ9XEEb5KYCdNfRmeXQx8MctkRkgdOtQduKPZV-csYRw9z-vI_x_YKXjRQkpzUuj-AR7howfN7BIMteBI3eNr1a9ieDYbdi6-k5vgnoVeRWZFhZI8NzBskdO6M_SI25MKbkbmZ0W_ewzkyqMK57qzaOnKJkx3RLjmZTarVdHMzJx74-kvLULDmjefurbg-hKvT76PuOW1aLlDLZbahPLfWIxBmpeKoeO5cZjCT2ogyY2WaGJZ7vGZEllvpRCZR5dpZJY1QjJdWizewt6gW-BaIxnFSJqXISg-5Av9tanEc6P_QMlXqcRs-32mgWNbMGkWMSJgugrqKoK6iUVcbDoPI791YS7sNR3dKK5rJty4EUwGGapm--8djn-Dp-ehXr-j96P98D8_Cl-pllSPY8yLCD_DY3m6m69XH-If9AZthzcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPSCO%3A+Global+Planar+Structural+Constraint+Optimal-Based+Point+Cloud+Registration+Algorithm+for+Repetitive+Structures&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Luo%2C+Chengwen&rft.au=Li%2C+Dong&rft.au=Yang%2C+Xuebo&rft.au=Wang%2C+Cheng&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3421607&rft.externalDocID=10584311 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |