GPSCO: Global Planar Structural Constraint Optimal-Based Point Cloud Registration Algorithm for Repetitive Structures

3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous studies have presented a series of point cloud registration algorithms with diverse efficiencies and accuracies. However, registering point clou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 15
Hlavní autoři: Luo, Chengwen, Li, Dong, Yang, Xuebo, Wang, Cheng, Wu, Xiaoyang, Tang, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract 3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous studies have presented a series of point cloud registration algorithms with diverse efficiencies and accuracies. However, registering point clouds with repetitive structures is still challenging. In this study, we propose the global planar structural constraint optimal (GPSCO)-based algorithm, which is specifically designed to handle the registration of repetitive structures. Its novelty lies in establishing the geometric constraint of multiple planes and registering based on the global optimal geometric constraint. The specific algorithm involves clustering the parallel planes into plane groups, estimating matching scores between plane groups, and selecting three corresponding pairs of nonparallel plane groups to form the plane structural constraint. The transformation matrix determined in the case of the optimal structural constraint is taken as the final result. The two terrestrial LiDAR datasets (HS1 and HS2) of real scenes with repetitive structures were collected to evaluate the GPSCO algorithm. Additionally, the GPSCO algorithm is validated on four public benchmark datasets, such as Whu-Park, Whu-Campus, ETH-Hauptgebaude, and ETH-Stairs. The registration results demonstrate that the GPSCO algorithm achieves 95.65%, 86.36%, 100%, 100%, 100%, and 88.89% successful registration rates (SRRs) on the six datasets, respectively, and significantly outperforms the existing methods on HS1 and HS2 with repetitive structures. The corresponding datasets and code are available at [ https://github.com/fog223/GPSCO ].
AbstractList 3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous studies have presented a series of point cloud registration algorithms with diverse efficiencies and accuracies. However, registering point clouds with repetitive structures is still challenging. In this study, we propose the global planar structural constraint optimal (GPSCO)-based algorithm, which is specifically designed to handle the registration of repetitive structures. Its novelty lies in establishing the geometric constraint of multiple planes and registering based on the global optimal geometric constraint. The specific algorithm involves clustering the parallel planes into plane groups, estimating matching scores between plane groups, and selecting three corresponding pairs of nonparallel plane groups to form the plane structural constraint. The transformation matrix determined in the case of the optimal structural constraint is taken as the final result. The two terrestrial LiDAR datasets (HS1 and HS2) of real scenes with repetitive structures were collected to evaluate the GPSCO algorithm. Additionally, the GPSCO algorithm is validated on four public benchmark datasets, such as Whu-Park, Whu-Campus, ETH-Hauptgebaude, and ETH-Stairs. The registration results demonstrate that the GPSCO algorithm achieves 95.65%, 86.36%, 100%, 100%, 100%, and 88.89% successful registration rates (SRRs) on the six datasets, respectively, and significantly outperforms the existing methods on HS1 and HS2 with repetitive structures. The corresponding datasets and code are available at [ https://github.com/fog223/GPSCO ].
Author Wu, Xiaoyang
Wang, Cheng
Yang, Xuebo
Li, Dong
Luo, Chengwen
Tang, Hao
Author_xml – sequence: 1
  givenname: Chengwen
  orcidid: 0009-0000-3505-3936
  surname: Luo
  fullname: Luo, Chengwen
  email: luochengwen22@mails.ucas.ac.cn
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Dong
  orcidid: 0009-0005-3206-7917
  surname: Li
  fullname: Li, Dong
  email: lidong@aircas.ac.cn
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Xuebo
  orcidid: 0000-0002-0949-0179
  surname: Yang
  fullname: Yang, Xuebo
  email: yangxb@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Xiaoyang
  orcidid: 0009-0001-6851-0395
  surname: Wu
  fullname: Wu, Xiaoyang
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Hao
  surname: Tang
  fullname: Tang, Hao
  organization: Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, China
BookMark eNpNkF9LwzAUxYMouE0_gOBDwOfO_E_q2yxahcHGNp9Lmmazo2tmkgp-e1s2xKcL555zLvc3Bpetay0AdxhNMUbp4yZfracEETaljGCB5AUYYc5VggRjl2CEcCoSolJyDcYh7BHCjGM5Al2-XGeLJ5g3rtQNXDa61R6uo-9M7HyvZK4N0eu6jXBxjPVBN8mzDraCSzdoWeO6Cq7srh5csXYtnDU75-v4eYBb5_vV0cY61t_2r9WGG3C11U2wt-c5AR-vL5vsLZkv8vdsNk8MYSImRBpDOUeGKWIVkVUltBUs1bQUqORYI0mI0FRIwyoqmFUyrYximipESpPSCXg49R69--psiMXedb7tTxYUKYa4TBnvXfjkMt6F4O22OPr-Uf9TYFQMdIuBbjHQLc50-8z9KVNba__5uWIUY_oLBHx4lg
CODEN IGRSD2
Cites_doi 10.1016/j.isprsjprs.2023.09.008
10.1145/361002.361007
10.1016/j.isprsjprs.2017.10.001
10.1016/j.isprsjprs.2007.05.002
10.1016/j.jvcir.2013.04.001
10.1145/1399504.1360684
10.1007/978-3-031-20077-9_16
10.1109/TGRS.2022.3208380
10.1109/CVPR52688.2022.01287
10.15607/RSS.2009.V.021
10.1117/12.57955
10.1016/j.isprsjprs.2020.03.013
10.1109/TGRS.2021.3128403
10.1109/TGRS.2019.2952086
10.1109/CVPR52688.2022.01086
10.1016/j.isprsjprs.2011.09.010
10.1109/TPAMI.2015.2513405
10.5194/isprsannals-II-5-W2-283-2013
10.5194/isprs-annals-IV-2-W4-185-2017
10.1109/ROBOT.2009.5152473
10.1109/IROS.2008.4650967
10.1016/j.isprsjprs.2006.06.001
10.1111/j.1467-8659.2007.01016.x
10.1109/IROS.2012.6386185
10.1109/ICRA.2014.6907776
10.1109/CVPR52729.2023.01702
10.1016/j.isprsjprs.2015.11.001
10.1109/ICCV.2019.00905
10.1016/j.robot.2021.103999
10.1016/j.isprsjprs.2022.04.017
10.1016/j.isprsjprs.2020.01.009
10.1016/j.isprsjprs.2014.05.012
10.1109/IROS.2003.1249285
10.1109/ROBOT.2008.4543181
10.1016/j.cviu.2014.04.011
10.1177/0278364912458814
10.1109/CVPR.2017.16
10.1109/CVPR46437.2021.00425
10.1109/CVPR52688.2022.00626
10.1016/j.isprsjprs.2019.04.004
10.1109/CVPR42600.2020.00639
10.1109/ICRA48506.2021.9560835
10.1109/ICCV.2019.00651
10.1016/j.isprsjprs.2017.04.001
10.1109/CVPR.2015.7298781
10.1109/TGRS.2023.3317822
10.1016/j.isprsjprs.2015.01.011
10.1007/978-3-319-46475-6_47
10.1145/358669.358692
10.1016/j.isprsjprs.2022.07.006
10.1016/j.isprsjprs.2005.02.006
10.1145/3326362
10.1109/ICCVW.2009.5457637
10.1111/cgf.12446
10.1109/CVPR46437.2021.01016
10.1016/j.isprsjprs.2019.02.015
10.1016/j.isprsjprs.2017.06.012
10.1109/TGRS.2021.3091380
10.1016/j.isprsjprs.2006.09.006
10.1007/s00371-011-0610-y
10.1016/j.isprsjprs.2015.12.005
10.1109/ICRA.2017.7989664
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3421607
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 15
ExternalDocumentID 10_1109_TGRS_2024_3421607
10584311
Genre orig-research
GrantInformation_xml – fundername: Research and Development Project of “Jianbing” “Lingyan” of Zhejiang Province
  grantid: 2023C03190
– fundername: Science and Disruptive Technology Program of AIRCAS
  funderid: 10.13039/501100018556
– fundername: National Natural Science Foundation of China
  grantid: 42201380; U22A20566
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c246t-27cc3550c482e827dd6ae649a3b60b51a07226a367c4d364e879dc84a3802bc93
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001276870500041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:36:26 EDT 2025
Sat Nov 29 03:32:38 EST 2025
Wed Aug 27 02:02:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-27cc3550c482e827dd6ae649a3b60b51a07226a367c4d364e879dc84a3802bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-3206-7917
0000-0002-0949-0179
0009-0000-3505-3936
0009-0001-6851-0395
PQID 3084057945
PQPubID 85465
PageCount 15
ParticipantIDs ieee_primary_10584311
proquest_journals_3084057945
crossref_primary_10_1109_TGRS_2024_3421607
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref17
Dold (ref46) 2004; 35
ref16
ref19
ref18
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Von Hansen (ref43) 2008; 37
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Qi (ref26); 30
Dold (ref53) 2006; 5
Dijkman (ref64) 2002; 34
ref24
ref23
ref67
ref25
ref20
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref2
  doi: 10.1016/j.isprsjprs.2023.09.008
– ident: ref29
  doi: 10.1145/361002.361007
– ident: ref39
  doi: 10.1016/j.isprsjprs.2017.10.001
– ident: ref47
  doi: 10.1016/j.isprsjprs.2007.05.002
– ident: ref49
  doi: 10.1016/j.jvcir.2013.04.001
– ident: ref34
  doi: 10.1145/1399504.1360684
– ident: ref44
  doi: 10.1007/978-3-031-20077-9_16
– ident: ref8
  doi: 10.1109/TGRS.2022.3208380
– ident: ref32
  doi: 10.1109/CVPR52688.2022.01287
– ident: ref11
  doi: 10.15607/RSS.2009.V.021
– ident: ref9
  doi: 10.1117/12.57955
– ident: ref40
  doi: 10.1016/j.isprsjprs.2020.03.013
– ident: ref57
  doi: 10.1109/TGRS.2021.3128403
– ident: ref54
  doi: 10.1109/TGRS.2019.2952086
– ident: ref7
  doi: 10.1109/CVPR52688.2022.01086
– volume: 35
  start-page: 1091
  year: 2004
  ident: ref46
  article-title: Automatic matching of terrestrial scan data as a basis for the generation of detailed 3D city models
  publication-title: Int. Arch. Photogramm. Remote Sens.
– ident: ref18
  doi: 10.1016/j.isprsjprs.2011.09.010
– ident: ref12
  doi: 10.1109/TPAMI.2015.2513405
– ident: ref35
  doi: 10.5194/isprsannals-II-5-W2-283-2013
– ident: ref56
  doi: 10.5194/isprs-annals-IV-2-W4-185-2017
– ident: ref21
  doi: 10.1109/ROBOT.2009.5152473
– ident: ref20
  doi: 10.1109/IROS.2008.4650967
– ident: ref62
  doi: 10.1016/j.isprsjprs.2006.06.001
– ident: ref45
  doi: 10.1111/j.1467-8659.2007.01016.x
– ident: ref16
  doi: 10.1109/IROS.2012.6386185
– ident: ref51
  doi: 10.1109/ICRA.2014.6907776
– ident: ref33
  doi: 10.1109/CVPR52729.2023.01702
– ident: ref63
  doi: 10.1016/j.isprsjprs.2015.11.001
– ident: ref24
  doi: 10.1109/ICCV.2019.00905
– ident: ref1
  doi: 10.1016/j.robot.2021.103999
– ident: ref59
  doi: 10.1016/j.isprsjprs.2022.04.017
– ident: ref50
  doi: 10.1016/j.isprsjprs.2020.01.009
– volume: 5
  start-page: 78
  year: 2006
  ident: ref53
  article-title: Registration of terrestrial laser scanning data using planar patches and image data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref60
  doi: 10.1016/j.isprsjprs.2014.05.012
– ident: ref15
  doi: 10.1109/IROS.2003.1249285
– volume: 30
  start-page: 5099
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref10
  doi: 10.1109/ROBOT.2008.4543181
– ident: ref22
  doi: 10.1016/j.cviu.2014.04.011
– ident: ref67
  doi: 10.1177/0278364912458814
– ident: ref25
  doi: 10.1109/CVPR.2017.16
– ident: ref6
  doi: 10.1109/CVPR46437.2021.00425
– ident: ref52
  doi: 10.1109/CVPR52688.2022.00626
– ident: ref41
  doi: 10.1016/j.isprsjprs.2019.04.004
– ident: ref5
  doi: 10.1109/CVPR42600.2020.00639
– ident: ref13
  doi: 10.1109/ICRA48506.2021.9560835
– ident: ref28
  doi: 10.1109/ICCV.2019.00651
– ident: ref4
  doi: 10.1016/j.isprsjprs.2017.04.001
– ident: ref66
  doi: 10.1109/CVPR.2015.7298781
– ident: ref14
  doi: 10.1109/TGRS.2023.3317822
– ident: ref48
  doi: 10.1016/j.isprsjprs.2015.01.011
– ident: ref31
  doi: 10.1007/978-3-319-46475-6_47
– ident: ref30
  doi: 10.1145/358669.358692
– ident: ref3
  doi: 10.1016/j.isprsjprs.2022.07.006
– ident: ref61
  doi: 10.1016/j.isprsjprs.2005.02.006
– ident: ref27
  doi: 10.1145/3326362
– ident: ref17
  doi: 10.1109/ICCVW.2009.5457637
– ident: ref36
  doi: 10.1111/cgf.12446
– ident: ref38
  doi: 10.1109/CVPR46437.2021.01016
– volume: 37
  start-page: 161
  year: 2008
  ident: ref43
  article-title: Line-based registration of terrestrial and airborne LiDAR data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref58
  doi: 10.1016/j.isprsjprs.2019.02.015
– ident: ref23
  doi: 10.1016/j.isprsjprs.2017.06.012
– ident: ref55
  doi: 10.1109/TGRS.2021.3091380
– ident: ref65
  doi: 10.1016/j.isprsjprs.2006.09.006
– ident: ref19
  doi: 10.1007/s00371-011-0610-y
– ident: ref42
  doi: 10.1016/j.isprsjprs.2015.12.005
– ident: ref37
  doi: 10.1109/ICRA.2017.7989664
– volume: 34
  start-page: 12
  issue: 5
  year: 2002
  ident: ref64
  article-title: Semi automatic registration of laser scanner data
  publication-title: Int. Arch. Photogramm. REMOTE Sens. Spat. Inf. Sci.
SSID ssj0014517
Score 2.4362223
Snippet 3-D point cloud registration is a prerequisite for scene reconstruction and 3-D object recognition in computer vision and remote sensing. Numerous previous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms 3-D point cloud
Algorithms
Benchmark testing
Clustering
Clustering algorithms
Computer vision
Datasets
Feature extraction
Geometric constraints
Image reconstruction
Image registration
Lidar
Object recognition
Pattern recognition
plane constraint
Planes
Point cloud compression
Registration
Remote sensing
Repetitive structures
Structures
Three dimensional models
Three-dimensional displays
Transmission line matrix methods
Vectors
Title GPSCO: Global Planar Structural Constraint Optimal-Based Point Cloud Registration Algorithm for Repetitive Structures
URI https://ieeexplore.ieee.org/document/10584311
https://www.proquest.com/docview/3084057945
Volume 62
WOSCitedRecordID wos001276870500041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA46KOjBXRw3cvAkRNMmzeJNB5eD6OCoeCtp8mYUxukwi7_fJK2DIh68lTYN5b3mLXl534fQkeTWQdcwQoE6wqVyRPHEEJckRivGVRb5U55v5d2dennR7bpZPfbCAEA8fAYn4TLW8l1pp2GrzK9w7y5Z6OSdl1JUzVqzkgHPkro3WhCfRaR1CTOh-vTx-qHjU8GUnzCeBkS1H04osqr8MsXRv1yt_vPL1tBKHUji80rz62gOBhto-Ru84AZajMc77XgTTa_bndb9Ga4Q_nFgKjIj3InYsQF3AwfezsgWMcH33oi8mz658P7N4XYZ7rX65dThB-jNYHbxeb9Xjt4mr-_Yh73-0TC0q3nTOZsVxlvo6erysXVDasIFYlMuJiSV1vr4g1quUlCpdE4YEFwbVghaZImh0kdrhglpuWOCg5LaWcUNUzQtrGbbqDEoB7CDsIZuUiQFE4UPuAL6bWahG8D_wFJV6G4THX9pIB9WuBp5zEeozoO68qCuvFZXE20FkX8bWEm7ifa_lJbXS2-cM6pCEKp5tvvHa3toKcxebaTso4YXCxygBfsxeRuPDuNf9QnpdMp5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hFgQcgIYiAgV86AnJwWt7d21uJaItIqRRk6LeVl57kkZKslEe_f3Y3m3UCnHgttqnNbOe-cbj-QbgOJfW4dgIypA5KnPlqJKJoS5JjFZCqjT2T_ndy_t9dX2tB02xeqyFQcS4-Qw74TDm8l1lt2GpzM9w7y5FqOTdT6XkrC7X2iUNZJo01dEZ9XEEb5KYCdNfRmeXQx8MctkRkgdOtQduKPZV-csYRw9z-vI_x_YKXjRQkpzUuj-AR7howfN7BIMteBI3eNr1a9ieDYbdi6-k5vgnoVeRWZFhZI8NzBskdO6M_SI25MKbkbmZ0W_ewzkyqMK57qzaOnKJkx3RLjmZTarVdHMzJx74-kvLULDmjefurbg-hKvT76PuOW1aLlDLZbahPLfWIxBmpeKoeO5cZjCT2ogyY2WaGJZ7vGZEllvpRCZR5dpZJY1QjJdWizewt6gW-BaIxnFSJqXISg-5Av9tanEc6P_QMlXqcRs-32mgWNbMGkWMSJgugrqKoK6iUVcbDoPI791YS7sNR3dKK5rJty4EUwGGapm--8djn-Dp-ehXr-j96P98D8_Cl-pllSPY8yLCD_DY3m6m69XH-If9AZthzcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPSCO%3A+Global+Planar+Structural+Constraint+Optimal-Based+Point+Cloud+Registration+Algorithm+for+Repetitive+Structures&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Luo%2C+Chengwen&rft.au=Li%2C+Dong&rft.au=Yang%2C+Xuebo&rft.au=Wang%2C+Cheng&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3421607&rft.externalDocID=10584311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon