A Fully Probabilistic Model for Sigmoid Approximation and Its Hardware- Efficient Implementation

The sigmoid function is a representative activation function in shallow neural networks. Its hardware realization is challenging due to the complex exponential and reciprocal operations. Existing studies applied piecewise models to approximate sigmoid function and employed numerical methods or non-u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. I, Regular papers Ročník 71; číslo 8; s. 3775 - 3786
Hlavní autoři: Lu, Wenhao, Lu, Minshan, Zhang, Xiangfen, Lu, Zhongzhiguang, Sun, Miao, Dong, Boyi, Shu, Zhou
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-8328, 1558-0806
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The sigmoid function is a representative activation function in shallow neural networks. Its hardware realization is challenging due to the complex exponential and reciprocal operations. Existing studies applied piecewise models to approximate sigmoid function and employed numerical methods or non-uniform input segmentations to mitigate fitting inaccuracies. However, the breakpoints introduce inevitable approximation precision loss. Besides, additional fitting processes greatly increase hardware complexity and power consumption. This paper presents a hardware-friendly sigmoidal approximation from the perspective of probability theory. We find that for a given input, the output of a sigmoid function can be approximated by the probability that the sum of this input and a Gaussian random variable is greater than or equal to zero. As the derived theorem does not involve piecewise expressions, the precision loss caused by the breakpoint issue is avoided. A low-complexity binary-search-based address localization method is proposed to optimize our theorem for hardware implementation. For the optimized scheme, an efficient implemented circuit is also presented. Our scheme's approximation ability and hardware efficiency are validated through software modeling and FPGA- and ASIC-based experiments. Feedforward neural network-based classification applications demonstrate that building networks with the proposed sigmoid approximator has only a tiny recognition rate loss.
AbstractList The sigmoid function is a representative activation function in shallow neural networks. Its hardware realization is challenging due to the complex exponential and reciprocal operations. Existing studies applied piecewise models to approximate sigmoid function and employed numerical methods or non-uniform input segmentations to mitigate fitting inaccuracies. However, the breakpoints introduce inevitable approximation precision loss. Besides, additional fitting processes greatly increase hardware complexity and power consumption. This paper presents a hardware-friendly sigmoidal approximation from the perspective of probability theory. We find that for a given input, the output of a sigmoid function can be approximated by the probability that the sum of this input and a Gaussian random variable is greater than or equal to zero. As the derived theorem does not involve piecewise expressions, the precision loss caused by the breakpoint issue is avoided. A low-complexity binary-search-based address localization method is proposed to optimize our theorem for hardware implementation. For the optimized scheme, an efficient implemented circuit is also presented. Our scheme’s approximation ability and hardware efficiency are validated through software modeling and FPGA- and ASIC-based experiments. Feedforward neural network-based classification applications demonstrate that building networks with the proposed sigmoid approximator has only a tiny recognition rate loss.
Author Lu, Wenhao
Lu, Zhongzhiguang
Zhang, Xiangfen
Lu, Minshan
Sun, Miao
Dong, Boyi
Shu, Zhou
Author_xml – sequence: 1
  givenname: Wenhao
  orcidid: 0000-0002-4842-2400
  surname: Lu
  fullname: Lu, Wenhao
  email: wenhaolu3-c@my.cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 2
  givenname: Minshan
  surname: Lu
  fullname: Lu, Minshan
  email: minshan001@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Jurong West, Singapore
– sequence: 3
  givenname: Xiangfen
  orcidid: 0000-0002-5332-3175
  surname: Zhang
  fullname: Zhang, Xiangfen
  email: xiangfen@shnu.edu.cn
  organization: College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
– sequence: 4
  givenname: Zhongzhiguang
  surname: Lu
  fullname: Lu, Zhongzhiguang
  email: luzh0013@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Jurong West, Singapore
– sequence: 5
  givenname: Miao
  orcidid: 0000-0002-4537-6998
  surname: Sun
  fullname: Sun, Miao
  email: miao.sun@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Jurong West, Singapore
– sequence: 6
  givenname: Boyi
  surname: Dong
  fullname: Dong, Boyi
  email: boyi.dong@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Jurong West, Singapore
– sequence: 7
  givenname: Zhou
  orcidid: 0000-0002-8493-4526
  surname: Shu
  fullname: Shu, Zhou
  email: shuzhou@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Cluny Road, Singapore
BookMark eNpNkM1OwzAQhC1UJNrCAyBxsMQ5xf9xjlXV0khFILWcjRs7yFUSBzsV9O1JaA-cdg7f7O7MBIwa31gA7jGaYYyyp91im88IImxGGaY8RVdgjDmXCZJIjAbNskRSIm_AJMYDQiRDFI_BxxyujlV1gm_B7_XeVS52roAv3tgKlj7ArfusvTNw3rbB_7had843UDcG5l2Eax3Mtw42gcuydIWzTQfzuq1s3as_9BZcl7qK9u4yp-B9tdwt1snm9TlfzDdJQZjoEsIKRiXTTBcZMpIQSQuc7gXnQxpuCCkRSYnUUmiRCUM5EwVDmRHG2pJSOgWP5739m19HGzt18MfQ9CcVRVIwSlPJegqfqSL4GIMtVRv6TOGkMFJDkWooUg1FqkuRvefh7HHW2n88FzLLBP0FKAZv8w
CODEN ITCSCH
Cites_doi 10.1109/ASAP.2019.00018
10.1109/ICCIT.2008.131
10.1109/ISIT.2019.8849497
10.1109/ICFPT51103.2020.00014
10.1109/TCSI.2022.3209574
10.1109/AICAS.2019.8771531
10.3390/bdcc2030026
10.1109/TIE.2022.3146573
10.1109/72.977323
10.1109/JBHI.2022.3178660
10.1109/TCSI.2019.2939563
10.1049/ip-cds:19971587
10.1109/TCSI.2021.3102303
10.1109/TCSI.2021.3133931
10.3390/electronics11091365
10.1109/ATS49688.2020.9301543
10.1109/TCC.2020.2997008
10.1007/springerreference_184570
10.1016/j.jvcir.2019.06.007
10.1109/TCSII.2020.2999458
10.1109/TCSI.2019.2959886
10.1109/TCSI.2022.3231863
10.1109/12.537127
10.1109/ICENCO48310.2019.9027479
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2024.3413570
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 3786
ExternalDocumentID 10_1109_TCSI_2024_3413570
10568996
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c246t-24c4384a4ac90d82283c17b65513575d22f02728a86a696d3546c409d6deef333
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258745300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Mon Jun 30 10:21:05 EDT 2025
Sat Nov 29 06:24:00 EST 2025
Wed Aug 27 02:34:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-24c4384a4ac90d82283c17b65513575d22f02728a86a696d3546c409d6deef333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5332-3175
0000-0002-4842-2400
0000-0002-4537-6998
0000-0002-8493-4526
PQID 3086433784
PQPubID 85411
PageCount 12
ParticipantIDs ieee_primary_10568996
proquest_journals_3086433784
crossref_primary_10_1109_TCSI_2024_3413570
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
ref24
ref23
ref22
ref21
ref28
Knuth (ref20) 1973; 422
ref27
ref8
Haley (ref19) 1953
ref7
Xiao (ref26) 2017
ref9
ref4
ref3
ref6
ref5
LeCun (ref25) 2010
References_xml – ident: ref14
  doi: 10.1109/ASAP.2019.00018
– ident: ref23
  doi: 10.1109/ICCIT.2008.131
– ident: ref9
  doi: 10.1109/ISIT.2019.8849497
– ident: ref22
  doi: 10.1109/ICFPT51103.2020.00014
– year: 2017
  ident: ref26
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv:1708.07747
– ident: ref2
  doi: 10.1109/TCSI.2022.3209574
– ident: ref3
  doi: 10.1109/AICAS.2019.8771531
– ident: ref6
  doi: 10.3390/bdcc2030026
– ident: ref13
  doi: 10.1109/TIE.2022.3146573
– ident: ref27
  doi: 10.1109/72.977323
– ident: ref10
  doi: 10.1109/JBHI.2022.3178660
– ident: ref17
  doi: 10.1109/TCSI.2019.2939563
– ident: ref11
  doi: 10.1049/ip-cds:19971587
– volume-title: MNIST handwritten digit database
  year: 2010
  ident: ref25
– ident: ref5
  doi: 10.1109/TCSI.2021.3102303
– volume: 422
  start-page: 559
  volume-title: The Art of Computer Programming: Sorting and Searching
  year: 1973
  ident: ref20
  article-title: Sorting and searching
– ident: ref18
  doi: 10.1109/TCSI.2021.3133931
– volume-title: Estimation Dosage Mortality Relationship When Dose is Subject to Error
  year: 1953
  ident: ref19
– ident: ref16
  doi: 10.3390/electronics11091365
– ident: ref28
  doi: 10.1109/ATS49688.2020.9301543
– ident: ref8
  doi: 10.1109/TCC.2020.2997008
– ident: ref24
  doi: 10.1007/springerreference_184570
– ident: ref7
  doi: 10.1016/j.jvcir.2019.06.007
– ident: ref15
  doi: 10.1109/TCSII.2020.2999458
– ident: ref4
  doi: 10.1109/TCSI.2019.2959886
– ident: ref1
  doi: 10.1109/TCSI.2022.3231863
– ident: ref12
  doi: 10.1109/12.537127
– ident: ref21
  doi: 10.1109/ICENCO48310.2019.9027479
SSID ssj0029031
Score 2.4227586
Snippet The sigmoid function is a representative activation function in shallow neural networks. Its hardware realization is challenging due to the complex exponential...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3775
SubjectTerms Approximation
Artificial neural networks
ASIC implementation
Complexity
Computational modeling
FPGA implementation
Hardware
hardware efficiency
Integrated circuit modeling
Localization method
Neural networks
Numerical methods
Numerical models
Optimization
Probabilistic logic
Probabilistic models
probabilistic-based method
Probability theory
Random variables
sigmoid activation function
Statistical analysis
Theorems
Title A Fully Probabilistic Model for Sigmoid Approximation and Its Hardware- Efficient Implementation
URI https://ieeexplore.ieee.org/document/10568996
https://www.proquest.com/docview/3086433784
Volume 71
WOSCitedRecordID wos001258745300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4qHvTgW6wvcvAkpF032dnkWMSiIKXQKr2taZKVgt3KtvXx781kVymIB2972CxhJpnMt5n5PkIuVJJoG6WO8REIJmQimJZSM5TXtn5EDIFM5_E-7XblcKh6dbN66IVxzoXiM9fEx3CXb6dmgb_KWqgS7_EBrJLVNIWqWesHXamIV-SoQjG_TGV9hXkVqdbgun_noWAsmhizExQmXjqEgqrKr1AczpfO9j9ntkO26kSStivP75IVV-yRzSV6wX3y1KaIMD9pr_S7FqtgkZSZovzZC_XJKu2PnyfTsaVtJBb_GFddjFQXlt7NZxQv9d916Ri9CTwTfgY0kAlP6n6l4oA8dG4G17esVlRgJhYwZ7EwgkuhhTYqshKpb8xVOgJUefF5m43j3MPUWGoJGhRYnggwHgFasM7lnPNDslZMC3dEaD7SBsD5_CEHHwRAmSS3HCxE3jje7w1y-W3i7LUizsgC4IhUhv7I0B9Z7Y8GOUCbLr1YmbNBTr-9ktV7a5Zxj8IE56kUx38MOyEb-PWqTu-UrM3LhTsj6-ZtPp6V52HZfAEMFb9c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwWbE-c_AkRLebbJociygWaxFapbc1TbJSsFtp6-vfm8muUhAP3vawYcNMMplvM_N9ACcqSbSN6o6yvuCUy4RTLaWmKK9t_YhYBDKdh1a93Za9nrorm9VDL4xzLhSfuTN8DHf5dmRe8VfZOarEe3wg5mEx4TyOinatH3ylIlbQo3JF_UKV5SVmLVLn3YtO04PBmJ9h1E5QmnjmGAq6Kr-CcThhrtb_ObcNWCtTSdIofL8Jcy7fgtUZgsFteGwQxJif5G7s9y3WwSItM0EBtGfi01XSGTwNRwNLGkgt_jEo-hiJzi1pTicEr_Xf9dhRchmYJvwMSKATHpYdS3kF7q8uuxfXtNRUoCbmYkpjbjiTXHNtVGQlkt-YWr0vUOfFZ242jjMPVGOppdBCCcsSLozHgFZY5zLG2A4s5KPc7QLJ-toI4XwGkQkfBoQySWaZsCLyxvGer8Lpt4nTl4I6Iw2QI1Ip-iNFf6SlP6pQQZvOvFiYswoH315Jy901SZnHYZyxuuR7fww7huXr7m0rbTXbN_uwgl8qqvYOYGE6fnWHsGTepoPJ-CgsoS8s2sKj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Probabilistic+Model+for+Sigmoid+Approximation+and+Its+Hardware-+Efficient+Implementation&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Lu%2C+Wenhao&rft.au=Lu%2C+Minshan&rft.au=Zhang%2C+Xiangfen&rft.au=Lu%2C+Zhongzhiguang&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1549-8328&rft.volume=71&rft.issue=8&rft.spage=3775&rft.epage=3786&rft_id=info:doi/10.1109%2FTCSI.2024.3413570&rft.externalDocID=10568996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon