A Precise and Fast Droplet Parameter Inversion Algorithm for Rainbow Scattering Detection

The rainbow scattering technique holds significant promise for simultaneously detecting micrometer-sized droplet size and refractive index. Reported here is a fast and lightweight deep-learning-based rainbow inversion algorithm containing a unique signal preprocessor and a novel signal inversion net...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 24; číslo 19; s. 30608 - 30618
Hlavní autoři: Li, Tianchi, Li, Can, Li, Ning
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The rainbow scattering technique holds significant promise for simultaneously detecting micrometer-sized droplet size and refractive index. Reported here is a fast and lightweight deep-learning-based rainbow inversion algorithm containing a unique signal preprocessor and a novel signal inversion network. Rainbow signal is preprocessed based on scattering intensity, scattering angle, and its intensity-angle area to effectively preserve the physical features. A multilayer perceptron (MLP)-based rainbow inversion network is constructed for more effective inversion of droplet size and refractive index at the global sensory field level. The algorithm achieves a 50fold speedup compared with conventional methods without compromising accuracy. Extensive simulations demonstrate an average relative error of <inline-formula> <tex-math notation="LaTeX">{0}.{89}\% </tex-math></inline-formula> in droplet size estimation and an average absolute error of <inline-formula> <tex-math notation="LaTeX">{3}.{81}\times {10} ^{-{5}} </tex-math></inline-formula> in refractive index determination. Experimental validation further confirms the algorithm's reliability. This work not only offers significant improvements in computational speed and accuracy but also opens new avenues for advanced droplet parameter inversion algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2024.3444053