A new class of three-term double projection approach for solving nonlinear monotone equations
The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection tec...
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 1664; číslo 1; s. 12147 - 12160 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IOP Publishing
01.11.2020
|
| Témata: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection technique for solving monotone systems of nonlinear equations. Our algorithm can be applied to solve nonsmooth equations, furthermore it's suitable for large scale equations due to simplicity and limited memory. This method constricts new two appropriate hyperplanes in each point strictly separates xk from the solution set, it can obtain the next iteration xk+1 by projecting xk onto the intersection of two halfspaces and include the solution set of the problem. The global convergence of the given method is investigated with mild assumptions. The numerical experiments prove that the new approach is working well and so promising. |
|---|---|
| AbstractList | The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection technique for solving monotone systems of nonlinear equations. Our algorithm can be applied to solve nonsmooth equations, furthermore it’s suitable for large scale equations due to simplicity and limited memory. This method constricts new two appropriate hyperplanes in each point strictly separates
x
k
from the solution set, it can obtain the next iteration
x
k
+1
by projecting
x
k
onto the intersection of two halfspaces and include the solution set of the problem. The global convergence of the given method is investigated with mild assumptions. The numerical experiments prove that the new approach is working well and so promising. The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection technique for solving monotone systems of nonlinear equations. Our algorithm can be applied to solve nonsmooth equations, furthermore it's suitable for large scale equations due to simplicity and limited memory. This method constricts new two appropriate hyperplanes in each point strictly separates xk from the solution set, it can obtain the next iteration xk+1 by projecting xk onto the intersection of two halfspaces and include the solution set of the problem. The global convergence of the given method is investigated with mild assumptions. The numerical experiments prove that the new approach is working well and so promising. |
| Author | Shiker, Mushtak A.K. Mahdi, M M |
| Author_xml | – sequence: 1 givenname: M M surname: Mahdi fullname: Mahdi, M M email: mohmath44@gmail.com organization: Department of Mathematics, College of Education for Pure Sciences, University of Babylon , - Iraq – sequence: 2 givenname: Mushtak A.K. surname: Shiker fullname: Shiker, Mushtak A.K. email: mmttmmhh@yahoo.com organization: Department of Mathematics, College of Education for Pure Sciences, University of Babylon , - Iraq |
| BookMark | eNqFUN9LwzAQDjLBbfo3mGehNmnSNH0cw58MFNRHCUmauI4uqUmn-N-bMhkIgvdyd9z33X33zcDEeWcAOMfoEiPOc1zRImNlzXLMGM1xjnCBaXUEpofJ5FBzfgJmMW4QIimqKXhdQGc-oe5kjNBbOKyDMdlgwhY2fqc6A_vgN0YPrXdQ9qmReg2tDzD67qN1bzDJ6VpnZIBb7_yQxEHzvpMjIZ6CYyu7aM5-8hy8XF89L2-z1cPN3XKxynRBWZXVpOa6rgvFrOaqwQ0llSqVpiWjkhW20CxVqqG1RRZJVhJbF5XmmNg0UZzMQbXfq4OPMRgr-tBuZfgSGInRJTH-L0YvxOiSwGLvUmJe7Jmt78XG74JLOsX94_LpN1D0jU1g8gf4vxPfyyd6Yg |
| Cites_doi | 10.1007/s11075-010-9367-z 10.2306/scienceasia1513-1874.2017.43.195 10.1007/s10092-018-0258-3 10.1007/s101070100263 10.17535/crorr.2018.0006 10.1007/s41980-018-0163-1 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION |
| DOI | 10.1088/1742-6596/1664/1/012147 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | A new class of three-term double projection approach for solving nonlinear monotone equations |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_1664_1_012147 JPCS_1664_1_012147 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c2467-9398c992b6fc8bd1d437b5bc4564a62f2c6564bd49f0f0a653f927c813fc65b83 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Sat Nov 29 04:52:47 EST 2025 Thu Jan 07 14:56:16 EST 2021 Wed Aug 21 03:38:31 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2467-9398c992b6fc8bd1d437b5bc4564a62f2c6564bd49f0f0a653f927c813fc65b83 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/1664/1/012147 |
| PageCount | 14 |
| ParticipantIDs | iop_journals_10_1088_1742_6596_1664_1_012147 crossref_primary_10_1088_1742_6596_1664_1_012147 |
| PublicationCentury | 2000 |
| PublicationDate | 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201101 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Solodov (JPCS_1664_1_012147bib5) 1999 Shiker (JPCS_1664_1_012147bib8) 2018; 9 Mahdi (JPCS_1664_1_012147bib13) 2020 Koorapetse (JPCS_1664_1_012147bib3) 2019; 45 Mahdi (JPCS_1664_1_012147bib11) 2020 Buhmiler (JPCS_1664_1_012147bib2) 2010; 55 Liu J K F Feng (JPCS_1664_1_012147bib10) 2018; 55 Yuan (JPCS_1664_1_012147bib6) 2017; 43 Mahdi (JPCS_1664_1_012147bib12) 2020 Hassan (JPCS_1664_1_012147bib21) 2018 Awwal (JPCS_1664_1_012147bib1) 2018; 16 Hussein (JPCS_1664_1_012147bib16) 2020 Hussein (JPCS_1664_1_012147bib17) 2020 Dolan (JPCS_1664_1_012147bib4) 2002; 91 Shiker (JPCS_1664_1_012147bib18) 2018; 13 Mahdi (JPCS_1664_1_012147bib14) 2020 Hussein (JPCS_1664_1_012147bib15) 2020 Dwail (JPCS_1664_1_012147bib20) 2020; 29 Zarantonello (JPCS_1664_1_012147bib7) 1971 Dwail (JPCS_1664_1_012147bib19) 2020 Wasi (JPCS_1664_1_012147bib9) 2020; 29 |
| References_xml | – volume: 29 start-page: 2351 year: 2020 ident: JPCS_1664_1_012147bib20 article-title: Using a new trust region algorithm with nonmonotone adaptive radius for solving nonlinear systems of equations, “in press” publication-title: International Journal of Advanced Science and Technology – start-page: 355 year: 1999 ident: JPCS_1664_1_012147bib5 – year: 2020 ident: JPCS_1664_1_012147bib17 article-title: Two New Effective Methods to Find the Optimal Solution for the Assignment Problems, “in press”, accepted paper for publication – year: 2020 ident: JPCS_1664_1_012147bib12 – year: 2020 ident: JPCS_1664_1_012147bib19 article-title: A new modified TR algorithm with adaptive radius to solve a nonlinear systems of equations, “in press”, accepted paper for publication in IOP Science – volume: 13 start-page: 9667 year: 2018 ident: JPCS_1664_1_012147bib18 article-title: A modified trust-region method for solving unconstrained optimization publication-title: Journal of Engineering and Applied Sciences – volume: 55 start-page: 481 year: 2010 ident: JPCS_1664_1_012147bib2 article-title: Practical quasi-Newton algorithms for singular nonlinear systems publication-title: Numer. Algoritm doi: 10.1007/s11075-010-9367-z – volume: 43 start-page: 195 year: 2017 ident: JPCS_1664_1_012147bib6 article-title: A derivative-free projection method for solving convex constrained monotone equations publication-title: Science Asia doi: 10.2306/scienceasia1513-1874.2017.43.195 – year: 1971 ident: JPCS_1664_1_012147bib7 – year: 2020 ident: JPCS_1664_1_012147bib11 – volume: 55 start-page: 16 year: 2018 ident: JPCS_1664_1_012147bib10 article-title: Some three-term conjugate gradient methods with the inexact line search condition publication-title: calcolo doi: 10.1007/s10092-018-0258-3 – year: 2020 ident: JPCS_1664_1_012147bib14 article-title: Three-term of new conjugate gradient projection approach under Wolfe condition to solve unconstrained optimization problems, “in press”, accepted paper for publication – volume: 91 start-page: 201 year: 2002 ident: JPCS_1664_1_012147bib4 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program doi: 10.1007/s101070100263 – year: 2020 ident: JPCS_1664_1_012147bib13 – volume: 9 start-page: 63 year: 2018 ident: JPCS_1664_1_012147bib8 article-title: A new projection-based algorithm for solving a large scale nonlinear system of monotone equations publication-title: Croatian operational research review doi: 10.17535/crorr.2018.0006 – volume: 16 start-page: 181 year: 2018 ident: JPCS_1664_1_012147bib1 article-title: A projection Hestenes-Stiefel like method for monotone nonlinear equations with convex constraints – year: 2020 ident: JPCS_1664_1_012147bib16 – volume: 45 start-page: 755 year: 2019 ident: JPCS_1664_1_012147bib3 article-title: A Scaled Derivative-Free Projection Method for Solving Nonlinear Monotone Equations publication-title: Bulletin of the Iranian Mathematical Society doi: 10.1007/s41980-018-0163-1 – volume: 29 start-page: 2303 year: 2020 ident: JPCS_1664_1_012147bib9 article-title: A new conjugate gradient method for solving large scale systems of monotone equations, “in press” publication-title: International Journal of Advanced Science and Technology – start-page: 10797 year: 2018 ident: JPCS_1664_1_012147bib21 article-title: Using of generalized baye’s theorem to evaluate the reliability of aircraft systems – year: 2020 ident: JPCS_1664_1_012147bib15 |
| SSID | ssj0033337 |
| Score | 2.4252152 |
| Snippet | The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work,... |
| SourceID | crossref iop |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 12147 |
| SubjectTerms | Double Projection Algorithm Line Search Method and Conjugate Gradient Descent Monotone Equations |
| Title | A new class of three-term double projection approach for solving nonlinear monotone equations |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/1664/1/012147 |
| Volume | 1664 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA62VfDiLtalBPTo2GaZmeRYpUU81OKCvUiYZBIQpK2d1t_vyyzgHEQE5zQw2fjy5uXL8r4gdEEiHREBM1VwwDrgIdGBpMYElDthmTXC9XR-2UQ8GonJRNZiYWbz0vVfwWshFFxAWB6IE13g0DSIQhl1SRTxLul6WTIeN1CLCRjNwabv2UvljRk8cREU6TMJUZ3x-rmg2gjVgFZ8G3CG2__R1B20VdJN3C9y7KI1O91DG_mxT5Pto9c-BlqNjafQeObwEnrWBt5b43S20u8Wlys10Hu4kh_HwHMxmKxfisDTQmojWWCw55lX9sb2o5APzw7Q83DwdHMblBcuBIZ6hymZFEZK6gOAhE5JylmsQ2285EwSUUcNsD-uUy5dz_WSKGRO0tgIwhx80YIdoiZUa48QDn1fhykJRSI4TFq09USJJWHMoQ5j26hXgazmha6GyvfDhVAeNeVRUx41RVSBWhtdAs6q_Mey35Of15LfjW8e6ynUPHXHfyv0BG1SP-HOgxFPUXO5WNkztG4-l2_ZooNa14PR-KGTW-AXtR3TYw |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD4k2Vb6sntpunYTbI_zHF1sS48hbWi3kQW2sbwMYckSDEqT5tLf33NspzQPYwzqJ4MlWXzn-OiTrPMJ4APPXc41zlQxALtEZdwlRnifCBV1kMHrOHD1YRPFZKJnMzPtwPguF2a-aEP_J7xthIIbCNsNcTpFDi2SPDN5yvNcpTwlWTJVpIsqduERyZWQd3-Tv7YRWeJVNImRVFHr7T6vvze2M0p1sSf3Bp3xs4fq7nN42tJONmxqvYBOuHoJT-rtn371Cn4PGdJr5olKs3lka7RwSChqs2q-cZeBtSs2aEW2lSFnyHcZui4tSbCrRnKjXDL06zkpfLNw3ciIr17Dz_HZj9F50h68kHhBgdNIo70xghKBtKt4pWThMudJeqbMRRQeWaBylTJxEAdlnsloROE1lxGfOC0PoIevDYfAMrJ5VvFMl1rh5MUFIkyyzAqF7_ChD4Mt0HbR6GvY-r-41paQs4ScJeQstw1yffiIWNv2W1v9u_j7neKfp6PvuyUsmuLo_xp9B3vT07H9ejH58gb2Bc3B6_zEY-itl5twAo_9zfrPavm2dsRbQ1fXMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+class+of+three-term+double+projection+approach+for+solving+nonlinear+monotone+equations&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Mahdi%2C+M+M&rft.au=Shiker%2C+Mushtak+A.K.&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1664&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1664%2F1%2F012147&rft.externalDocID=JPCS_1664_1_012147 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |