A new class of three-term double projection approach for solving nonlinear monotone equations

The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection tec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1664; číslo 1; s. 12147 - 12160
Hlavní autoři: Mahdi, M M, Shiker, Mushtak A.K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IOP Publishing 01.11.2020
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection technique for solving monotone systems of nonlinear equations. Our algorithm can be applied to solve nonsmooth equations, furthermore it's suitable for large scale equations due to simplicity and limited memory. This method constricts new two appropriate hyperplanes in each point strictly separates xk from the solution set, it can obtain the next iteration xk+1 by projecting xk onto the intersection of two halfspaces and include the solution set of the problem. The global convergence of the given method is investigated with mild assumptions. The numerical experiments prove that the new approach is working well and so promising.
AbstractList The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection technique for solving monotone systems of nonlinear equations. Our algorithm can be applied to solve nonsmooth equations, furthermore it’s suitable for large scale equations due to simplicity and limited memory. This method constricts new two appropriate hyperplanes in each point strictly separates x k from the solution set, it can obtain the next iteration x k +1 by projecting x k onto the intersection of two halfspaces and include the solution set of the problem. The global convergence of the given method is investigated with mild assumptions. The numerical experiments prove that the new approach is working well and so promising.
The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection technique for solving monotone systems of nonlinear equations. Our algorithm can be applied to solve nonsmooth equations, furthermore it's suitable for large scale equations due to simplicity and limited memory. This method constricts new two appropriate hyperplanes in each point strictly separates xk from the solution set, it can obtain the next iteration xk+1 by projecting xk onto the intersection of two halfspaces and include the solution set of the problem. The global convergence of the given method is investigated with mild assumptions. The numerical experiments prove that the new approach is working well and so promising.
Author Shiker, Mushtak A.K.
Mahdi, M M
Author_xml – sequence: 1
  givenname: M M
  surname: Mahdi
  fullname: Mahdi, M M
  email: mohmath44@gmail.com
  organization: Department of Mathematics, College of Education for Pure Sciences, University of Babylon , - Iraq
– sequence: 2
  givenname: Mushtak A.K.
  surname: Shiker
  fullname: Shiker, Mushtak A.K.
  email: mmttmmhh@yahoo.com
  organization: Department of Mathematics, College of Education for Pure Sciences, University of Babylon , - Iraq
BookMark eNqFUN9LwzAQDjLBbfo3mGehNmnSNH0cw58MFNRHCUmauI4uqUmn-N-bMhkIgvdyd9z33X33zcDEeWcAOMfoEiPOc1zRImNlzXLMGM1xjnCBaXUEpofJ5FBzfgJmMW4QIimqKXhdQGc-oe5kjNBbOKyDMdlgwhY2fqc6A_vgN0YPrXdQ9qmReg2tDzD67qN1bzDJ6VpnZIBb7_yQxEHzvpMjIZ6CYyu7aM5-8hy8XF89L2-z1cPN3XKxynRBWZXVpOa6rgvFrOaqwQ0llSqVpiWjkhW20CxVqqG1RRZJVhJbF5XmmNg0UZzMQbXfq4OPMRgr-tBuZfgSGInRJTH-L0YvxOiSwGLvUmJe7Jmt78XG74JLOsX94_LpN1D0jU1g8gf4vxPfyyd6Yg
Cites_doi 10.1007/s11075-010-9367-z
10.2306/scienceasia1513-1874.2017.43.195
10.1007/s10092-018-0258-3
10.1007/s101070100263
10.17535/crorr.2018.0006
10.1007/s41980-018-0163-1
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1742-6596/1664/1/012147
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A new class of three-term double projection approach for solving nonlinear monotone equations
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1664_1_012147
JPCS_1664_1_012147
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c2467-9398c992b6fc8bd1d437b5bc4564a62f2c6564bd49f0f0a653f927c813fc65b83
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Sat Nov 29 04:52:47 EST 2025
Thu Jan 07 14:56:16 EST 2021
Wed Aug 21 03:38:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2467-9398c992b6fc8bd1d437b5bc4564a62f2c6564bd49f0f0a653f927c813fc65b83
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1664/1/012147
PageCount 14
ParticipantIDs iop_journals_10_1088_1742_6596_1664_1_012147
crossref_primary_10_1088_1742_6596_1664_1_012147
PublicationCentury 2000
PublicationDate 20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Solodov (JPCS_1664_1_012147bib5) 1999
Shiker (JPCS_1664_1_012147bib8) 2018; 9
Mahdi (JPCS_1664_1_012147bib13) 2020
Koorapetse (JPCS_1664_1_012147bib3) 2019; 45
Mahdi (JPCS_1664_1_012147bib11) 2020
Buhmiler (JPCS_1664_1_012147bib2) 2010; 55
Liu J K F Feng (JPCS_1664_1_012147bib10) 2018; 55
Yuan (JPCS_1664_1_012147bib6) 2017; 43
Mahdi (JPCS_1664_1_012147bib12) 2020
Hassan (JPCS_1664_1_012147bib21) 2018
Awwal (JPCS_1664_1_012147bib1) 2018; 16
Hussein (JPCS_1664_1_012147bib16) 2020
Hussein (JPCS_1664_1_012147bib17) 2020
Dolan (JPCS_1664_1_012147bib4) 2002; 91
Shiker (JPCS_1664_1_012147bib18) 2018; 13
Mahdi (JPCS_1664_1_012147bib14) 2020
Hussein (JPCS_1664_1_012147bib15) 2020
Dwail (JPCS_1664_1_012147bib20) 2020; 29
Zarantonello (JPCS_1664_1_012147bib7) 1971
Dwail (JPCS_1664_1_012147bib19) 2020
Wasi (JPCS_1664_1_012147bib9) 2020; 29
References_xml – volume: 29
  start-page: 2351
  year: 2020
  ident: JPCS_1664_1_012147bib20
  article-title: Using a new trust region algorithm with nonmonotone adaptive radius for solving nonlinear systems of equations, “in press”
  publication-title: International Journal of Advanced Science and Technology
– start-page: 355
  year: 1999
  ident: JPCS_1664_1_012147bib5
– year: 2020
  ident: JPCS_1664_1_012147bib17
  article-title: Two New Effective Methods to Find the Optimal Solution for the Assignment Problems, “in press”, accepted paper for publication
– year: 2020
  ident: JPCS_1664_1_012147bib12
– year: 2020
  ident: JPCS_1664_1_012147bib19
  article-title: A new modified TR algorithm with adaptive radius to solve a nonlinear systems of equations, “in press”, accepted paper for publication in IOP Science
– volume: 13
  start-page: 9667
  year: 2018
  ident: JPCS_1664_1_012147bib18
  article-title: A modified trust-region method for solving unconstrained optimization
  publication-title: Journal of Engineering and Applied Sciences
– volume: 55
  start-page: 481
  year: 2010
  ident: JPCS_1664_1_012147bib2
  article-title: Practical quasi-Newton algorithms for singular nonlinear systems
  publication-title: Numer. Algoritm
  doi: 10.1007/s11075-010-9367-z
– volume: 43
  start-page: 195
  year: 2017
  ident: JPCS_1664_1_012147bib6
  article-title: A derivative-free projection method for solving convex constrained monotone equations
  publication-title: Science Asia
  doi: 10.2306/scienceasia1513-1874.2017.43.195
– year: 1971
  ident: JPCS_1664_1_012147bib7
– year: 2020
  ident: JPCS_1664_1_012147bib11
– volume: 55
  start-page: 16
  year: 2018
  ident: JPCS_1664_1_012147bib10
  article-title: Some three-term conjugate gradient methods with the inexact line search condition
  publication-title: calcolo
  doi: 10.1007/s10092-018-0258-3
– year: 2020
  ident: JPCS_1664_1_012147bib14
  article-title: Three-term of new conjugate gradient projection approach under Wolfe condition to solve unconstrained optimization problems, “in press”, accepted paper for publication
– volume: 91
  start-page: 201
  year: 2002
  ident: JPCS_1664_1_012147bib4
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program
  doi: 10.1007/s101070100263
– year: 2020
  ident: JPCS_1664_1_012147bib13
– volume: 9
  start-page: 63
  year: 2018
  ident: JPCS_1664_1_012147bib8
  article-title: A new projection-based algorithm for solving a large scale nonlinear system of monotone equations
  publication-title: Croatian operational research review
  doi: 10.17535/crorr.2018.0006
– volume: 16
  start-page: 181
  year: 2018
  ident: JPCS_1664_1_012147bib1
  article-title: A projection Hestenes-Stiefel like method for monotone nonlinear equations with convex constraints
– year: 2020
  ident: JPCS_1664_1_012147bib16
– volume: 45
  start-page: 755
  year: 2019
  ident: JPCS_1664_1_012147bib3
  article-title: A Scaled Derivative-Free Projection Method for Solving Nonlinear Monotone Equations
  publication-title: Bulletin of the Iranian Mathematical Society
  doi: 10.1007/s41980-018-0163-1
– volume: 29
  start-page: 2303
  year: 2020
  ident: JPCS_1664_1_012147bib9
  article-title: A new conjugate gradient method for solving large scale systems of monotone equations, “in press”
  publication-title: International Journal of Advanced Science and Technology
– start-page: 10797
  year: 2018
  ident: JPCS_1664_1_012147bib21
  article-title: Using of generalized baye’s theorem to evaluate the reliability of aircraft systems
– year: 2020
  ident: JPCS_1664_1_012147bib15
SSID ssj0033337
Score 2.4252152
Snippet The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work,...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 12147
SubjectTerms Double Projection Algorithm
Line Search Method and Conjugate Gradient Descent
Monotone Equations
Title A new class of three-term double projection approach for solving nonlinear monotone equations
URI https://iopscience.iop.org/article/10.1088/1742-6596/1664/1/012147
Volume 1664
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA62VfDiLtalBPTo2GaZmeRYpUU81OKCvUiYZBIQpK2d1t_vyyzgHEQE5zQw2fjy5uXL8r4gdEEiHREBM1VwwDrgIdGBpMYElDthmTXC9XR-2UQ8GonJRNZiYWbz0vVfwWshFFxAWB6IE13g0DSIQhl1SRTxLul6WTIeN1CLCRjNwabv2UvljRk8cREU6TMJUZ3x-rmg2gjVgFZ8G3CG2__R1B20VdJN3C9y7KI1O91DG_mxT5Pto9c-BlqNjafQeObwEnrWBt5b43S20u8Wlys10Hu4kh_HwHMxmKxfisDTQmojWWCw55lX9sb2o5APzw7Q83DwdHMblBcuBIZ6hymZFEZK6gOAhE5JylmsQ2285EwSUUcNsD-uUy5dz_WSKGRO0tgIwhx80YIdoiZUa48QDn1fhykJRSI4TFq09USJJWHMoQ5j26hXgazmha6GyvfDhVAeNeVRUx41RVSBWhtdAs6q_Mey35Of15LfjW8e6ynUPHXHfyv0BG1SP-HOgxFPUXO5WNkztG4-l2_ZooNa14PR-KGTW-AXtR3TYw
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD4k2Vb6sntpunYTbI_zHF1sS48hbWi3kQW2sbwMYckSDEqT5tLf33NspzQPYwzqJ4MlWXzn-OiTrPMJ4APPXc41zlQxALtEZdwlRnifCBV1kMHrOHD1YRPFZKJnMzPtwPguF2a-aEP_J7xthIIbCNsNcTpFDi2SPDN5yvNcpTwlWTJVpIsqduERyZWQd3-Tv7YRWeJVNImRVFHr7T6vvze2M0p1sSf3Bp3xs4fq7nN42tJONmxqvYBOuHoJT-rtn371Cn4PGdJr5olKs3lka7RwSChqs2q-cZeBtSs2aEW2lSFnyHcZui4tSbCrRnKjXDL06zkpfLNw3ciIr17Dz_HZj9F50h68kHhBgdNIo70xghKBtKt4pWThMudJeqbMRRQeWaBylTJxEAdlnsloROE1lxGfOC0PoIevDYfAMrJ5VvFMl1rh5MUFIkyyzAqF7_ChD4Mt0HbR6GvY-r-41paQs4ScJeQstw1yffiIWNv2W1v9u_j7neKfp6PvuyUsmuLo_xp9B3vT07H9ejH58gb2Bc3B6_zEY-itl5twAo_9zfrPavm2dsRbQ1fXMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+class+of+three-term+double+projection+approach+for+solving+nonlinear+monotone+equations&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Mahdi%2C+M+M&rft.au=Shiker%2C+Mushtak+A.K.&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1664&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1664%2F1%2F012147&rft.externalDocID=JPCS_1664_1_012147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon