Multi-Objective Sustainable Operational Optimization of Fluid Catalytic Cracking

Fluid Catalytic Cracking (FCC) constitutes a critical process in petroleum refining, facing increasing pressure to align with sustainable development goals by improving energy efficiency and reducing environmental impact. This study tackles a multi-objective optimization challenge in FCC operations,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sustainability Ročník 17; číslo 22; s. 10045
Hlavní autoři: Pang, Shibao, Lin, Yang, Shi, Hongxun, Yin, Rui, Tao, Ran, Li, Donghong, Li, Chuankun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2025
Témata:
ISSN:2071-1050, 2071-1050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fluid Catalytic Cracking (FCC) constitutes a critical process in petroleum refining, facing increasing pressure to align with sustainable development goals by improving energy efficiency and reducing environmental impact. This study tackles a multi-objective optimization challenge in FCC operations, seeking to simultaneously maximize the gasoline production and minimize the coke yield—the latter being directly linked to CO2 emissions in FCC. A data-driven optimization model leveraging a dual Long Short-Term Memory architecture is developed to capture complex relationships between operating variables and product yields. To efficiently solve the model, an Improved Multi-Objective Whale Optimization Algorithm (IMOWOA) is proposed, integrating problem-specific adaptive multi-neighborhood search and dynamic restart mechanisms. Extensive experimental evaluations demonstrate that IMOWOA achieves superior convergence characteristics and comprehensive performance compared to established multi-objective algorithms. Relative to the yields before optimization, the proposed methodology increases the gasoline yield by 0.32% on average, coupled with an average reduction of 0.11% in the coke yield. For the studied FCC unit with an annual processing capacity of 2.6 million tons, the coke reduction corresponds to an annual CO2 emission reduction of approximately 10,277 tons, delivering benefits to sustainable FCC operations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2071-1050
2071-1050
DOI:10.3390/su172210045