SACW: Semi-Asynchronous Federated Learning with Client Selection and Adaptive Weighting
Federated learning (FL), as a privacy-preserving distributed machine learning paradigm, demonstrates unique advantages in addressing data silo problems. However, the prevalent statistical heterogeneity (data distribution disparities) and system heterogeneity (device capability variations) in practic...
Uloženo v:
| Vydáno v: | Computers (Basel) Ročník 14; číslo 11; s. 464 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.11.2025
|
| Témata: | |
| ISSN: | 2073-431X, 2073-431X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!