System for neural network recognition of malignant pigmented skin neoplasms with image pre-processing

The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of removing hair structures from images, as well as resizing images and their further augmentation. Augmentation made it possible to increase the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 2052; no. 1; pp. 12023 - 12031
Main Authors: Lyakhova, U A, Lyakhov, P A, Abdulkadirov, R I, Efimenko, G A, Romanov, S A, Kaplun, D I
Format: Journal Article
Language:English
Published: IOP Publishing 01.11.2021
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of removing hair structures from images, as well as resizing images and their further augmentation. Augmentation made it possible to increase the variety of training data, balance the number of images in different categories, and avoid retraining the neural network. The modeling was carried out using the MatLab R2020b software package for solving technical calculations on clinical dermatoscopic images from the international open archive ISIC Melanoma Project. The proposed system for the recognition of malignant pigmented skin neoplasms made it possible to increase the accuracy of image classification up to 80.55%. The use of the proposed recognition system will make it possible to increase the efficiency and quality of diagnosis, in comparison with the methods of visual diagnosis.
AbstractList The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of removing hair structures from images, as well as resizing images and their further augmentation. Augmentation made it possible to increase the variety of training data, balance the number of images in different categories, and avoid retraining the neural network. The modeling was carried out using the MatLab R2020b software package for solving technical calculations on clinical dermatoscopic images from the international open archive ISIC Melanoma Project. The proposed system for the recognition of malignant pigmented skin neoplasms made it possible to increase the accuracy of image classification up to 80.55%. The use of the proposed recognition system will make it possible to increase the efficiency and quality of diagnosis, in comparison with the methods of visual diagnosis.
Author Kaplun, D I
Lyakhov, P A
Romanov, S A
Lyakhova, U A
Efimenko, G A
Abdulkadirov, R I
Author_xml – sequence: 1
  givenname: U A
  surname: Lyakhova
  fullname: Lyakhova, U A
  organization: North-Caucasus Federal University , Russian Federation
– sequence: 2
  givenname: P A
  surname: Lyakhov
  fullname: Lyakhov, P A
  organization: North-Caucasus Center of Mathematical Research, North-Caucasus Federal University , Russian Federation
– sequence: 3
  givenname: R I
  surname: Abdulkadirov
  fullname: Abdulkadirov, R I
  organization: North-Caucasus Federal University , Russian Federation
– sequence: 4
  givenname: G A
  surname: Efimenko
  fullname: Efimenko, G A
  organization: Saint Petersburg Electrotechnical University “LETI” , Russian Federation
– sequence: 5
  givenname: S A
  surname: Romanov
  fullname: Romanov, S A
  organization: Saint Petersburg Electrotechnical University “LETI” , Russian Federation
– sequence: 6
  givenname: D I
  surname: Kaplun
  fullname: Kaplun, D I
  organization: Saint Petersburg Electrotechnical University “LETI” , Russian Federation
BookMark eNqFkFtLAzEQhYNUsK3-BvMsrJvsNfsoxSsFhepzyCaTNe1usiRbSv-9u1QEQXBezsCcmTl8CzSzzgJC15TcUsJYTMssiYq8KuKE5ElMY0ITkqRnaP4zmf30jF2gRQhbQtKxyjmCzTEM0GHtPLaw96IdZTg4v8MepGusGYyz2GncidY0VtgB96bpwA6gcNgZO_pd34rQBXwwwyc2nWgA9x6i3jsJIRjbXKJzLdoAV9-6RB8P9--rp2j9-vi8ultHMsmKNKprSmSWaai1ZIrUUCgpVVmrSlOqS1WlwPI8U7JQlUxSImsqWCUoISUjlSbpEpWnu9K7EDxo3vsxjz9ySvhEi08c-MSET7Q45Sda4-bNadO4nm_d3tsxJ395W21-G3mv9GhO_zD_9-ILEmF-yA
Cites_doi 10.1016/S0895-6111(02)00048-4
10.18287/2412-6179-2016-40-2-240-248
10.1038/nature21056
10.1016/j.artmed.2012.08.002
10.18287/2412-6179-2017-41-4-521-527
10.1586/edm.11.79
10.1016/j.jvcir.2018.07.011
10.1109/ACCESS.2020.3001507
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1742-6596/2052/1/012023
DatabaseName IOP Publishing Free Content
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: IOP Open Access Journals (LUT & LAB)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2052_1_012023
JPCS_2052_1_012023
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
ROL
ID FETCH-LOGICAL-c2463-bb10c44febfc8d0be6dccd7bd9f11f7d93e8554dc6d9c230cb1a89a1007809f03
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Sat Nov 29 02:07:00 EST 2025
Wed Aug 21 03:42:57 EDT 2024
Sat Nov 20 05:50:17 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2463-bb10c44febfc8d0be6dccd7bd9f11f7d93e8554dc6d9c230cb1a89a1007809f03
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/2052/1/012023
PageCount 9
ParticipantIDs crossref_primary_10_1088_1742_6596_2052_1_012023
iop_journals_10_1088_1742_6596_2052_1_012023
PublicationCentury 2000
PublicationDate 20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211101
  day: 01
PublicationDecade 2020
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Siegel (JPCS_2052_1_012023bib5) 2018; 68
Schmid-Saugeona (JPCS_2052_1_012023bib15) 2003; 27
Redmon (JPCS_2052_1_012023bib20) 2017
Zoph (JPCS_2052_1_012023bib21) 2018
Bratchenko (JPCS_2052_1_012023bib6) 2016; 40
Gonzalez (JPCS_2052_1_012023bib19) 2010
Naeem (JPCS_2052_1_012023bib8) 2020; 8
Zaqout (JPCS_2052_1_012023bib13) 2017; 41
Esteva (JPCS_2052_1_012023bib12) 2017; 542
JPCS_2052_1_012023bib25
Sedigh (JPCS_2052_1_012023bib11) 2019
Zhang (JPCS_2052_1_012023bib17) 2018; 55
Gonzalez (JPCS_2052_1_012023bib16) 2007
Howard (JPCS_2052_1_012023bib24) 2017
Stern (JPCS_2052_1_012023bib3) 2010; 3
Tan (JPCS_2052_1_012023bib23) 2019
Nami (JPCS_2052_1_012023bib7) 2012; 1
Khuriwal (JPCS_2052_1_012023bib1) 2018
Haenssle (JPCS_2052_1_012023bib4) 2018; 29
Ramlakhan (JPCS_2052_1_012023bib10) 2011
JPCS_2052_1_012023bib18
Rashid (JPCS_2052_1_012023bib14) 2019
Korotkov (JPCS_2052_1_012023bib9) 2012; 56
Szegedy (JPCS_2052_1_012023bib22) 2015
Rogers (JPCS_2052_1_012023bib2) 2006; 3
References_xml – volume: 27
  start-page: 65
  year: 2003
  ident: JPCS_2052_1_012023bib15
  article-title: Towards a computer-aided diag-nosis system for pigmented skin lesions
  publication-title: Computerized medical imaging and graphics: the official journal of the Computerized Medical Imaging Society
  doi: 10.1016/S0895-6111(02)00048-4
– start-page: 6105
  year: 2019
  ident: JPCS_2052_1_012023bib23
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 40
  start-page: 240
  year: 2016
  ident: JPCS_2052_1_012023bib6
  article-title: Hyperspectral visualiza-tion of skin pathologies in the visible area
  publication-title: Computer Optics
  doi: 10.18287/2412-6179-2016-40-2-240-248
– start-page: 497
  year: 2019
  ident: JPCS_2052_1_012023bib11
  article-title: Generating synthetic medical images by using GAN to improve CNN performance in skin cancer classification
– volume: 542
  start-page: 115
  year: 2017
  ident: JPCS_2052_1_012023bib12
  article-title: Thrun Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: JPCS_2052_1_012023bib25
– start-page: 7263
  year: 2017
  ident: JPCS_2052_1_012023bib20
  article-title: YOLO9000: better, faster, stronger
– volume: 56
  start-page: 69
  year: 2012
  ident: JPCS_2052_1_012023bib9
  article-title: Computerized analysis of pigmented skin lesions: A review
  publication-title: Artificial intelligence in medicine
  doi: 10.1016/j.artmed.2012.08.002
– volume: 41
  start-page: 521
  year: 2017
  ident: JPCS_2052_1_012023bib13
  article-title: An efficient block-based algorithm for hair removal in dermoscopic images
  publication-title: Computer Optics
  doi: 10.18287/2412-6179-2017-41-4-521-527
– start-page: 8697
  year: 2018
  ident: JPCS_2052_1_012023bib21
  article-title: Learning transferable architectures for scalable image recognition
– start-page: 916
  year: 2019
  ident: JPCS_2052_1_012023bib14
  article-title: Skin lesion classification using GAN based data augmentation
– start-page: 138
  year: 2011
  ident: JPCS_2052_1_012023bib10
  article-title: A mobile automated skin lesion classifi-cation
– volume: 3
  start-page: 283
  year: 2006
  ident: JPCS_2052_1_012023bib2
  article-title: Incidence estimate of nonmelanoma skin cancer in the United States
  publication-title: Archives of dermatology
– volume: 29
  start-page: 1836
  year: 2018
  ident: JPCS_2052_1_012023bib4
  article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
– volume: 68
  start-page: 7
  year: 2018
  ident: JPCS_2052_1_012023bib5
  article-title: Cancer statistics for hispanics/latinos 2018
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 1
  start-page: 1
  year: 2012
  ident: JPCS_2052_1_012023bib7
  article-title: Teledermatology: state-of-the-art and future perspectives
  publication-title: Expert Review of Dermatology
  doi: 10.1586/edm.11.79
– start-page: 976
  year: 2007
  ident: JPCS_2052_1_012023bib16
– volume: 55
  start-page: 640
  year: 2018
  ident: JPCS_2052_1_012023bib17
  article-title: Small sample image recogni-tion using improved Convolutional Neural Network
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2018.07.011
– start-page: 1
  year: 2015
  ident: JPCS_2052_1_012023bib22
  article-title: Going deeper with convolutions
– ident: JPCS_2052_1_012023bib18
– volume: 8
  start-page: 110575
  year: 2020
  ident: JPCS_2052_1_012023bib8
  article-title: Malignant melanoma classification using deep learning: datasets, performance measurements, challenges and opportunities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001507
– volume: 3
  start-page: 279
  year: 2010
  ident: JPCS_2052_1_012023bib3
  article-title: Prevalence of a history of skin cancer in 2007: results of an incidence-based model
  publication-title: Archives of dermatology
– year: 2017
  ident: JPCS_2052_1_012023bib24
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– start-page: 1
  year: 2018
  ident: JPCS_2052_1_012023bib1
  article-title: Breast cancer diagnosis using adaptive voting ensemble machine learning algorithm
– start-page: 344
  year: 2010
  ident: JPCS_2052_1_012023bib19
  article-title: Digital Image Processing using MATLAB
SSID ssj0033337
Score 2.2761705
Snippet The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 12023
Title System for neural network recognition of malignant pigmented skin neoplasms with image pre-processing
URI https://iopscience.iop.org/article/10.1088/1742-6596/2052/1/012023
Volume 2052
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Open Access Journals (LUT & LAB)
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA6u4MVdHDcCerRO00zT5KjiIB5GcUFvYbINg0xbpurv96XpiD2ICPbUw3shfE3e0nzvBaGToaYWNkISMZ1CgsKciLhOaeTYUFkmKDHU1ZdNZIMBf3kRrVqYomxM_xm8hkbBAcKGEMe7EEPD0KlgkLinSZd0ff1nQufRIuUp82v9lj7PrDGFJwtFkV6J8xnH6-eBWh5qHmbxzeH01_5jqutotQk38XnQ2EBzNt9EyzXtU1dbyIaG5RgiV-w7W4JoHnjh-ItZVOS4cHgC8frIk2ZwOR7VjTwNrl7HOcgXJUTgkwr7X7p4PAEDhT23pAwlCOAat9FT_-rx8jpqLl6IdNJjNFKKxLrXc1Y5zU0MH81obTJlhCPEZUZQ69ltRjMjNOQwWpEhF0NPuOCxcDHdQQt5kdtdhLkj3CkKcaBiPWsSpQXk3JB2gj6kNqSD4hnYsgz9NWR9Ls659OhJj5706EkiA3oddAp4y2avVb-LH7fEb-4uH9oSsjRu72-D7qOVxJNb6qLEA7TwNn23h2hJf7yNq-kRWry4GtzdH9Ur8RMem9bY
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaSrh122aPd0OwpYD3WjWXFjnQcshlbO2QB2qK5CdYrCIbYRtzu94-ynGA5FEWB-eQDSQifLIq0PlIAJ4VmFhdCEmU6xQQlcyLiOmWRywplM8GoYa69bGI8nfL5XMx6kG9rYaq6c_1n-BoaBQcIO0IcH2IMjaZTkWHiniZDOvT1nwkb1sb14UnKUuavcPjFbjYemeEzDoWRXpHzDc_rfmM7u1QfR_LPppO_-F_DfQnPu7CTfAlar6Bny0M4aOmfujkCGxqXE4xgie9wiaJl4IeTLcOoKknlyArj9oUnz5B6uWgbehrS_F6WKF_VGImvGuJ_7ZLlCh0V8RyTOpQi4Bb5Gq7zb1eT71F3AUOkk1HGIqVorEcjZ5XT3MQ4eUZrM1ZGOErd2AhmPcvN6MwIjbmMVrTgovDECx4LF7M3sFdWpT0Gwh3lTjGMB1U2siZRWmDujekn6mOKQwcQbwCXdeizIdvzcc6lR1B6BKVHUFIZEBzAKWIuuzXXPCz-eUf8fDa53JWQOCVvH2f0Ezydfc3lzx_Ti3fwLPF8l7ZO8T3s3a7v7AfY139ul836Y_tB_gWy_9qd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+for+neural+network+recognition+of+malignant+pigmented+skin+neoplasms+with+image+pre-processing&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Lyakhova%2C+U+A&rft.au=Lyakhov%2C+P+A&rft.au=Abdulkadirov%2C+R+I&rft.au=Efimenko%2C+G+A&rft.date=2021-11-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2052&rft.issue=1&rft.spage=12023&rft_id=info:doi/10.1088%2F1742-6596%2F2052%2F1%2F012023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2052_1_012023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon