System for neural network recognition of malignant pigmented skin neoplasms with image pre-processing
The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of removing hair structures from images, as well as resizing images and their further augmentation. Augmentation made it possible to increase the...
Saved in:
| Published in: | Journal of physics. Conference series Vol. 2052; no. 1; pp. 12023 - 12031 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IOP Publishing
01.11.2021
|
| ISSN: | 1742-6588, 1742-6596 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of removing hair structures from images, as well as resizing images and their further augmentation. Augmentation made it possible to increase the variety of training data, balance the number of images in different categories, and avoid retraining the neural network. The modeling was carried out using the MatLab R2020b software package for solving technical calculations on clinical dermatoscopic images from the international open archive ISIC Melanoma Project. The proposed system for the recognition of malignant pigmented skin neoplasms made it possible to increase the accuracy of image classification up to 80.55%. The use of the proposed recognition system will make it possible to increase the efficiency and quality of diagnosis, in comparison with the methods of visual diagnosis. |
|---|---|
| AbstractList | The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of removing hair structures from images, as well as resizing images and their further augmentation. Augmentation made it possible to increase the variety of training data, balance the number of images in different categories, and avoid retraining the neural network. The modeling was carried out using the MatLab R2020b software package for solving technical calculations on clinical dermatoscopic images from the international open archive ISIC Melanoma Project. The proposed system for the recognition of malignant pigmented skin neoplasms made it possible to increase the accuracy of image classification up to 80.55%. The use of the proposed recognition system will make it possible to increase the efficiency and quality of diagnosis, in comparison with the methods of visual diagnosis. |
| Author | Kaplun, D I Lyakhov, P A Romanov, S A Lyakhova, U A Efimenko, G A Abdulkadirov, R I |
| Author_xml | – sequence: 1 givenname: U A surname: Lyakhova fullname: Lyakhova, U A organization: North-Caucasus Federal University , Russian Federation – sequence: 2 givenname: P A surname: Lyakhov fullname: Lyakhov, P A organization: North-Caucasus Center of Mathematical Research, North-Caucasus Federal University , Russian Federation – sequence: 3 givenname: R I surname: Abdulkadirov fullname: Abdulkadirov, R I organization: North-Caucasus Federal University , Russian Federation – sequence: 4 givenname: G A surname: Efimenko fullname: Efimenko, G A organization: Saint Petersburg Electrotechnical University “LETI” , Russian Federation – sequence: 5 givenname: S A surname: Romanov fullname: Romanov, S A organization: Saint Petersburg Electrotechnical University “LETI” , Russian Federation – sequence: 6 givenname: D I surname: Kaplun fullname: Kaplun, D I organization: Saint Petersburg Electrotechnical University “LETI” , Russian Federation |
| BookMark | eNqFkFtLAzEQhYNUsK3-BvMsrJvsNfsoxSsFhepzyCaTNe1usiRbSv-9u1QEQXBezsCcmTl8CzSzzgJC15TcUsJYTMssiYq8KuKE5ElMY0ITkqRnaP4zmf30jF2gRQhbQtKxyjmCzTEM0GHtPLaw96IdZTg4v8MepGusGYyz2GncidY0VtgB96bpwA6gcNgZO_pd34rQBXwwwyc2nWgA9x6i3jsJIRjbXKJzLdoAV9-6RB8P9--rp2j9-vi8ultHMsmKNKprSmSWaai1ZIrUUCgpVVmrSlOqS1WlwPI8U7JQlUxSImsqWCUoISUjlSbpEpWnu9K7EDxo3vsxjz9ySvhEi08c-MSET7Q45Sda4-bNadO4nm_d3tsxJ395W21-G3mv9GhO_zD_9-ILEmF-yA |
| Cites_doi | 10.1016/S0895-6111(02)00048-4 10.18287/2412-6179-2016-40-2-240-248 10.1038/nature21056 10.1016/j.artmed.2012.08.002 10.18287/2412-6179-2017-41-4-521-527 10.1586/edm.11.79 10.1016/j.jvcir.2018.07.011 10.1109/ACCESS.2020.3001507 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION |
| DOI | 10.1088/1742-6596/2052/1/012023 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10_1088_1742_6596_2052_1_012023 JPCS_2052_1_012023 |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX AEINN AFFHD CITATION OVT PHGZM PHGZT PQGLB ROL |
| ID | FETCH-LOGICAL-c2463-bb10c44febfc8d0be6dccd7bd9f11f7d93e8554dc6d9c230cb1a89a1007809f03 |
| IEDL.DBID | O3W |
| ISSN | 1742-6588 |
| IngestDate | Sat Nov 29 02:07:00 EST 2025 Wed Aug 21 03:42:57 EDT 2024 Sat Nov 20 05:50:17 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2463-bb10c44febfc8d0be6dccd7bd9f11f7d93e8554dc6d9c230cb1a89a1007809f03 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2052/1/012023 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1088_1742_6596_2052_1_012023 iop_journals_10_1088_1742_6596_2052_1_012023 |
| PublicationCentury | 2000 |
| PublicationDate | 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211101 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of physics. Conference series |
| PublicationTitleAlternate | J. Phys.: Conf. Ser |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Siegel (JPCS_2052_1_012023bib5) 2018; 68 Schmid-Saugeona (JPCS_2052_1_012023bib15) 2003; 27 Redmon (JPCS_2052_1_012023bib20) 2017 Zoph (JPCS_2052_1_012023bib21) 2018 Bratchenko (JPCS_2052_1_012023bib6) 2016; 40 Gonzalez (JPCS_2052_1_012023bib19) 2010 Naeem (JPCS_2052_1_012023bib8) 2020; 8 Zaqout (JPCS_2052_1_012023bib13) 2017; 41 Esteva (JPCS_2052_1_012023bib12) 2017; 542 JPCS_2052_1_012023bib25 Sedigh (JPCS_2052_1_012023bib11) 2019 Zhang (JPCS_2052_1_012023bib17) 2018; 55 Gonzalez (JPCS_2052_1_012023bib16) 2007 Howard (JPCS_2052_1_012023bib24) 2017 Stern (JPCS_2052_1_012023bib3) 2010; 3 Tan (JPCS_2052_1_012023bib23) 2019 Nami (JPCS_2052_1_012023bib7) 2012; 1 Khuriwal (JPCS_2052_1_012023bib1) 2018 Haenssle (JPCS_2052_1_012023bib4) 2018; 29 Ramlakhan (JPCS_2052_1_012023bib10) 2011 JPCS_2052_1_012023bib18 Rashid (JPCS_2052_1_012023bib14) 2019 Korotkov (JPCS_2052_1_012023bib9) 2012; 56 Szegedy (JPCS_2052_1_012023bib22) 2015 Rogers (JPCS_2052_1_012023bib2) 2006; 3 |
| References_xml | – volume: 27 start-page: 65 year: 2003 ident: JPCS_2052_1_012023bib15 article-title: Towards a computer-aided diag-nosis system for pigmented skin lesions publication-title: Computerized medical imaging and graphics: the official journal of the Computerized Medical Imaging Society doi: 10.1016/S0895-6111(02)00048-4 – start-page: 6105 year: 2019 ident: JPCS_2052_1_012023bib23 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – volume: 40 start-page: 240 year: 2016 ident: JPCS_2052_1_012023bib6 article-title: Hyperspectral visualiza-tion of skin pathologies in the visible area publication-title: Computer Optics doi: 10.18287/2412-6179-2016-40-2-240-248 – start-page: 497 year: 2019 ident: JPCS_2052_1_012023bib11 article-title: Generating synthetic medical images by using GAN to improve CNN performance in skin cancer classification – volume: 542 start-page: 115 year: 2017 ident: JPCS_2052_1_012023bib12 article-title: Thrun Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: JPCS_2052_1_012023bib25 – start-page: 7263 year: 2017 ident: JPCS_2052_1_012023bib20 article-title: YOLO9000: better, faster, stronger – volume: 56 start-page: 69 year: 2012 ident: JPCS_2052_1_012023bib9 article-title: Computerized analysis of pigmented skin lesions: A review publication-title: Artificial intelligence in medicine doi: 10.1016/j.artmed.2012.08.002 – volume: 41 start-page: 521 year: 2017 ident: JPCS_2052_1_012023bib13 article-title: An efficient block-based algorithm for hair removal in dermoscopic images publication-title: Computer Optics doi: 10.18287/2412-6179-2017-41-4-521-527 – start-page: 8697 year: 2018 ident: JPCS_2052_1_012023bib21 article-title: Learning transferable architectures for scalable image recognition – start-page: 916 year: 2019 ident: JPCS_2052_1_012023bib14 article-title: Skin lesion classification using GAN based data augmentation – start-page: 138 year: 2011 ident: JPCS_2052_1_012023bib10 article-title: A mobile automated skin lesion classifi-cation – volume: 3 start-page: 283 year: 2006 ident: JPCS_2052_1_012023bib2 article-title: Incidence estimate of nonmelanoma skin cancer in the United States publication-title: Archives of dermatology – volume: 29 start-page: 1836 year: 2018 ident: JPCS_2052_1_012023bib4 article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists – volume: 68 start-page: 7 year: 2018 ident: JPCS_2052_1_012023bib5 article-title: Cancer statistics for hispanics/latinos 2018 publication-title: CA: A Cancer Journal for Clinicians – volume: 1 start-page: 1 year: 2012 ident: JPCS_2052_1_012023bib7 article-title: Teledermatology: state-of-the-art and future perspectives publication-title: Expert Review of Dermatology doi: 10.1586/edm.11.79 – start-page: 976 year: 2007 ident: JPCS_2052_1_012023bib16 – volume: 55 start-page: 640 year: 2018 ident: JPCS_2052_1_012023bib17 article-title: Small sample image recogni-tion using improved Convolutional Neural Network publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2018.07.011 – start-page: 1 year: 2015 ident: JPCS_2052_1_012023bib22 article-title: Going deeper with convolutions – ident: JPCS_2052_1_012023bib18 – volume: 8 start-page: 110575 year: 2020 ident: JPCS_2052_1_012023bib8 article-title: Malignant melanoma classification using deep learning: datasets, performance measurements, challenges and opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001507 – volume: 3 start-page: 279 year: 2010 ident: JPCS_2052_1_012023bib3 article-title: Prevalence of a history of skin cancer in 2007: results of an incidence-based model publication-title: Archives of dermatology – year: 2017 ident: JPCS_2052_1_012023bib24 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – start-page: 1 year: 2018 ident: JPCS_2052_1_012023bib1 article-title: Breast cancer diagnosis using adaptive voting ensemble machine learning algorithm – start-page: 344 year: 2010 ident: JPCS_2052_1_012023bib19 article-title: Digital Image Processing using MATLAB |
| SSID | ssj0033337 |
| Score | 2.2761705 |
| Snippet | The article presents a system for the recognition of malignant pigmented skin neoplasms with a preliminary processing stage. Image pre-processing consists of... |
| SourceID | crossref iop |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 12023 |
| Title | System for neural network recognition of malignant pigmented skin neoplasms with image pre-processing |
| URI | https://iopscience.iop.org/article/10.1088/1742-6596/2052/1/012023 |
| Volume | 2052 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: P5Z dateStart: 20040801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6588 databaseCode: PIMPY dateStart: 20040801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0-wY1v8U1Al9Zpm7ZJljo4iMgovnehzWMoMm2Zqt_vTdMRuxAR7KqLmxBO05uT5pxbhI4jrbKUEuopFRMv4knkpUDjPWViSqUJVNgYaZ-u6XDIXl54xwtTVm3qP4VbVyjYQdgK4lgPOHToJTFPYOMeh72gZ_2fIZlF84TFiZ3rN-R5mo0JXNSZIm0jxqYar5876qxQszCKbwvOYOU_hrqKllu6ic9cizU0o4t1tNjIPmW9gbQrWI6BuWJb2RJCC6cLx1_KorLApcFj4OsjK5rBVT5qCnkqXL_mBcSXFTDwcY3tJ12cjyFBYastqZwFAZbGTfQ4uHjoX3rtjxc8GUYJ8bIs8GUUGZ0ZyZSf6URJqWimuAkCQxUn2qrblEwUl7CHkVmQMp5awQXzufHJFporykJvI6x4GjMTJ_D8TUQzwyUBjqM0ZVFMNA13kD8FW1SuvoZozsUZExY9YdETFj0RCIfeDjoBvEX7rtW_hx91wq9u-_fdCFEps_u3TvfQUmjFLY0pcR_NvU3e9QFakB9veT05RPPnF8Pbu8NmJn4CbAvXOw |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3B0qJe-gkqlFJLcGy6SRzH9hEBK760rNTScrMSf6xWaJOIbPn9HcdZxB6qqhI55TC2rBdn_Jy8NwY4zKwpC055ZAyjUSbzLCqQxkfGMc61S0zaGWl_XvHxWNzeyskajB69MHXTp_5veBsKBQcIe0GcGCKHTqOcyRw37iwdJkPv_0zpsDFuHTYYZdQf4XBNfy0zMsWLB2OkbyjEUuf1985WVql1HMmTRWf05rmG-xZe97STHIVW72DNVu_hZSf_1O0HsKFwOUEGS3yFSwytgj6cPCqM6orUjsyRt0-9eIY0s2lX0NOQ9m5WYXzdIBOft8R_2iWzOSYq4jUmTbAi4BK5BTej0x_HZ1F_AEOk0yynUVkmsc4yZ0unhYlLmxutDS-NdEniuJHUepWb0bmRGvcyukwKIQsvvBCxdDHdhkFVV_YjECMLJhzLcR64jJdOaopcx1guMkYtT3cgXgKumlBnQ3X_x4VQHkHlEVQeQZWogOAOfEXMVf_Otf8OP1gJv5gcf1-NUPhIdv-v0y-wOTkZqavz8eUneJV6vUvnU9yDweL-t_0ML_TDYtbe73cT8g8BX9sA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+for+neural+network+recognition+of+malignant+pigmented+skin+neoplasms+with+image+pre-processing&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Lyakhova%2C+U+A&rft.au=Lyakhov%2C+P+A&rft.au=Abdulkadirov%2C+R+I&rft.au=Efimenko%2C+G+A&rft.date=2021-11-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2052&rft.issue=1&rft.spage=12023&rft_id=info:doi/10.1088%2F1742-6596%2F2052%2F1%2F012023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2052_1_012023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |