Neural Combinatorial Optimization for Multiobjective Task Offloading in Mobile Edge Computing
Task offloading is crucial in supporting resource-intensive applications in mobile edge computing. This paper explores multiobjective task offloading, aiming to minimize energy consumption and latency simultaneously. Although learning-based algorithms have been used to address this problem, they tra...
Uloženo v:
| Vydáno v: | IEEE transactions on vehicular technology Ročník 74; číslo 7; s. 10869 - 10880 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Task offloading is crucial in supporting resource-intensive applications in mobile edge computing. This paper explores multiobjective task offloading, aiming to minimize energy consumption and latency simultaneously. Although learning-based algorithms have been used to address this problem, they train a model based on one a priori preference to make the offloading decision. When the preference changes, the trained model may not perform well and needs to be retrained. To address this issue, we propose a neural combinatorial optimization method that combines an encoder-decoder model with reinforcement learning. The encoder captures task relationships, while the decoder, equipped with a preference-conditioned attention mechanism, determines offloading decisions for various preferences. Additionally, reinforcement learning is employed to train the encoder-decoder model. Since the proposed method can infer the offloading decision for each preference, it eliminates the need to retrain the model when the preference changes, thus improving real-time performance. Experimental studies demonstrate the effectiveness of the proposed method by comparison with three algorithms on instances of different scales. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2025.3546914 |