Channel-Aware Deep Joint Source-Channel Coding for Multi-Task Oriented Semantic Communication

Existing deep learning (DL)-based semantic communication generally employs deep neural networks (DNNs) for semantic extraction at a fixed dimension and incorporates channel state information (CSI) to facilitate semantic transmission. However, the optimal dimension of the semantic information to tran...

Full description

Saved in:
Bibliographic Details
Published in:IEEE wireless communications letters Vol. 14; no. 5; pp. 1521 - 1525
Main Authors: Wang, Biqi, Gu, Run, Xu, Wei, Jiang, Feng, Li, Mengyu, Wang, Shen
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-2337, 2162-2345
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Existing deep learning (DL)-based semantic communication generally employs deep neural networks (DNNs) for semantic extraction at a fixed dimension and incorporates channel state information (CSI) to facilitate semantic transmission. However, the optimal dimension of the semantic information to transmit varies with wireless channel conditions, trading off between channel uses and performance depending on the channel condition. To strike the balance, this letter proposes a channel-aware deep joint source-channel coding (CA-DJSCC) for multi-task oriented semantic communication. Specifically, we formulate an optimization problem to characterize the intricate and hard-to-quantify relationship between the channel condition and the optimal dimension. To achieve the channel-adaptive dimension, we develop a joint source and channel encoder, pruning elements based on semantic importance. Correspondingly, we also design a joint source and channel decoder, introducing a reference signal to enhance the multi-task performance. Simulation results demonstrate that the CA-DJSCC achieves superior performance in terms of both image reconstruction and classification tasks, with over 44.1% reduction in average channel uses compared to typical baselines.
AbstractList Existing deep learning (DL)-based semantic communication generally employs deep neural networks (DNNs) for semantic extraction at a fixed dimension and incorporates channel state information (CSI) to facilitate semantic transmission. However, the optimal dimension of the semantic information to transmit varies with wireless channel conditions, trading off between channel uses and performance depending on the channel condition. To strike the balance, this letter proposes a channel-aware deep joint source-channel coding (CA-DJSCC) for multi-task oriented semantic communication. Specifically, we formulate an optimization problem to characterize the intricate and hard-to-quantify relationship between the channel condition and the optimal dimension. To achieve the channel-adaptive dimension, we develop a joint source and channel encoder, pruning elements based on semantic importance. Correspondingly, we also design a joint source and channel decoder, introducing a reference signal to enhance the multi-task performance. Simulation results demonstrate that the CA-DJSCC achieves superior performance in terms of both image reconstruction and classification tasks, with over 44.1% reduction in average channel uses compared to typical baselines.
Author Wang, Biqi
Jiang, Feng
Wang, Shen
Gu, Run
Li, Mengyu
Xu, Wei
Author_xml – sequence: 1
  givenname: Biqi
  orcidid: 0009-0002-4273-3870
  surname: Wang
  fullname: Wang, Biqi
  email: 220221062@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 2
  givenname: Run
  orcidid: 0009-0003-0894-2481
  surname: Gu
  fullname: Gu, Run
  email: rung@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0001-9341-8382
  surname: Xu
  fullname: Xu, Wei
  email: wxu@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 4
  givenname: Feng
  orcidid: 0009-0004-0457-8907
  surname: Jiang
  fullname: Jiang, Feng
  email: jiangfeng@cmdi.chinamobile.com
  organization: Wireless Network Department, China Mobile Group Design Institute Company Ltd., Beijing, China
– sequence: 5
  givenname: Mengyu
  orcidid: 0009-0002-0755-9045
  surname: Li
  fullname: Li, Mengyu
  email: limengyu@cmdi.chinamobile.com
  organization: Wireless Network Department, China Mobile Group Design Institute Company Ltd., Beijing, China
– sequence: 6
  givenname: Shen
  surname: Wang
  fullname: Wang, Shen
  email: wangshen@cmdi.chinamobile.com
  organization: Wireless Network Department, China Mobile Group Design Institute Company Ltd., Beijing, China
BookMark eNpNkE1LAzEQhoMoWGvvHjwEPG9Nssk2OZb1m0oPrXiSJd1MNLWb1Owu4r83pUXMZQLzvDPDc4aOffCA0AUlY0qJup69lmNGmBjngksi-REaMFqwjOVcHP_988kpGrXtmqRXEMqoHKC38kN7D5ts-q0j4BuALX4Kznd4EfpYQ3bo4zIY59-xDRE_95vOZUvdfuJ5dOA7MHgBjfadqxPXNL13te5c8OfoxOpNC6NDHaKXu9tl-ZDN5veP5XSW1YyLLjNgjOTCUr4izCjGqTCCrMjKKGsKNeFWWqGV1YxpYyWI2lCjDJGGWpGy-RBd7eduY_jqoe2qdbrep5VVnrxQOWFcJYrsqTqGto1gq210jY4_FSXVzmOVPFY7j9XBY4pc7iMOAP7hijJekPwXkKVwxQ
CODEN IWCLAF
Cites_doi 10.1109/JSTSP.2023.3239189
10.1109/TCCN.2022.3151935
10.1109/JSAC.2022.3221948
10.1109/TCCN.2019.2919300
10.1109/JSAC.2022.3191326
10.1109/LSP.2021.3113827
10.1109/JSAC.2021.3126087
10.1109/LWC.2021.3132067
10.5555/2969033.2969125
10.1109/TWC.2023.3349330
10.1007/s11432-023-3704-8
10.1109/CVPR.2016.90
10.1109/TCOMM.2024.3386577
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LWC.2025.3548084
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2162-2345
EndPage 1525
ExternalDocumentID 10_1109_LWC_2025_3548084
10912460
Genre orig-research
GrantInformation_xml – fundername: Special Fund for Key Basic Research in Jiangsu Province
  grantid: BK20243015
  funderid: 10.13039/501100012489
– fundername: Joint Research and Development Project with the Wireless Network Department of China Mobile Design Institute, which titled “Key Technologies for Self Intelligent Networks” of China Mobile Group
  grantid: R2210069
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c245t-dedd845f14b02d92415d50b0bd9fd6974f8f5a9fa22adf8e5cd1d9d08d1f5edd3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485404600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-2337
IngestDate Mon Nov 10 11:11:13 EST 2025
Sat Nov 29 07:56:17 EST 2025
Wed Aug 27 01:53:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-dedd845f14b02d92415d50b0bd9fd6974f8f5a9fa22adf8e5cd1d9d08d1f5edd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-0755-9045
0009-0003-0894-2481
0000-0001-9341-8382
0009-0004-0457-8907
0009-0002-4273-3870
PQID 3202187249
PQPubID 2040496
PageCount 5
ParticipantIDs proquest_journals_3202187249
crossref_primary_10_1109_LWC_2025_3548084
ieee_primary_10912460
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE wireless communications letters
PublicationTitleAbbrev LWC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref14
Krizhevsky (ref12) 2009
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – year: 2009
  ident: ref12
  article-title: Learning multiple layers of features from tiny images
– ident: ref1
  doi: 10.1109/JSTSP.2023.3239189
– ident: ref5
  doi: 10.1109/TCCN.2022.3151935
– ident: ref7
  doi: 10.1109/JSAC.2022.3221948
– ident: ref13
  doi: 10.1109/TCCN.2019.2919300
– ident: ref14
  doi: 10.1109/JSAC.2022.3191326
– ident: ref3
  doi: 10.1109/LSP.2021.3113827
– ident: ref8
  doi: 10.1109/JSAC.2021.3126087
– ident: ref6
  doi: 10.1109/LWC.2021.3132067
– ident: ref11
  doi: 10.5555/2969033.2969125
– ident: ref2
  doi: 10.1109/TWC.2023.3349330
– ident: ref9
  doi: 10.1007/s11432-023-3704-8
– ident: ref10
  doi: 10.1109/CVPR.2016.90
– ident: ref4
  doi: 10.1109/TCOMM.2024.3386577
SSID ssj0000601218
Score 2.3961034
Snippet Existing deep learning (DL)-based semantic communication generally employs deep neural networks (DNNs) for semantic extraction at a fixed dimension and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1521
SubjectTerms Artificial neural networks
Coding
Communication
Data mining
Decoding
deep learning
Feature extraction
Image reconstruction
joint source and channel coding
Machine learning
multi-task execution
Multitasking
Optimization
Reference signals
Semantic communication
Semantics
Signal to noise ratio
Training
Vectors
Visualization
Wireless communications
Title Channel-Aware Deep Joint Source-Channel Coding for Multi-Task Oriented Semantic Communication
URI https://ieeexplore.ieee.org/document/10912460
https://www.proquest.com/docview/3202187249
Volume 14
WOSCitedRecordID wos001485404600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2345
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601218
  issn: 2162-2337
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjB3-J0Sg5ePGSmWbI2xzEdIjKFKXqR0ua9wFC7sR_675uknUzEg7dCm1LytX3ve8n3PULOOFhlueEMc8mZVJizXFvOQHELic1ilcnQbCLu95PnZ31fidWDFgYRw-YzbPrDsJYPIzP3pbILb2IpZNsx9NU4bpdire-CijcWEaGeJ6K2YKLVihfLklxf3D51HRkUqtnyBmeJ_BGGQl-VXz_jEGF6W_98tm2yWaWStFNiv0NWsNglG0sGg3vkxYsHCnxjnc9sgvQScUxvRsNiRgehaM-q87Q78jGMugyWBkkue8imr_TOmyC7lJQO8N0hMDT0h55knzz2rh6616xqqMCMkGrGAAESqWwkcy5A--DtMMl5DtpC2zELm1iVaZsJkYFNUBmIQANPILLKjW0dkFoxKvCQUKMMB7BG5AplZoWWwoKVLp9zVF1HWCfni_lNx6VvRhr4BtepwyL1WKQVFnWy7-dz6bpyKuuksUAkrb6saer7vUdJ7Fjj0R_Djsm6v3u5K7FBarPJHE_ImvmYDaeT0_DSfAHPKMFR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBfXgz4nzZw5ePGSmWbI1R5nK1DkFJ3qR0ua9wFA72ab--yZpJ4p48FZoQ0u-tu99L_m-R8gBB6ssN5xhJjmTCjOWacsZKG4htmlLpTI0m2j1evHDg74pxepBC4OIYfMZ1v1hWMuHoXnzpbIjb2IpZNMx9FklpeCFXOurpOKtRUSo6ImoKZhoNFrThUmuj7r3bUcHhao3vMVZLH8EotBZ5dfvOMSYs-V_Pt0KWSqTSXpcoL9KZjBfI4vfLAbXyaOXD-T4zI4_0hHSE8RXejEc5BN6G8r2rDxP20MfxajLYWkQ5bJ-On6i194G2SWl9BZfHAYDQ38oSqrk7uy03-6wsqUCM0KqCQMEiKWykcy4AO3Dt0Ml4xloC03HLWxsVaptKkQKNkZlIAINPIbIKje2sUEq-TDHTUKNMhzAGpEplKkVWgoLVrqMzpF1HWGNHE7nN3ktnDOSwDi4ThwWicciKbGokaqfz2_XFVNZIztTRJLy2xonvuN7FLccb9z6Y9g-me_0r7pJ97x3uU0W_J2KPYo7pDIZveEumTPvk8F4tBdeoE8IvsSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Channel-Aware+Deep+Joint+Source-Channel+Coding+for+Multi-Task+Oriented+Semantic+Communication&rft.jtitle=IEEE+wireless+communications+letters&rft.au=Wang%2C+Biqi&rft.au=Gu%2C+Run&rft.au=Xu%2C+Wei&rft.au=Jiang%2C+Feng&rft.date=2025-05-01&rft.issn=2162-2337&rft.eissn=2162-2345&rft.volume=14&rft.issue=5&rft.spage=1521&rft.epage=1525&rft_id=info:doi/10.1109%2FLWC.2025.3548084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LWC_2025_3548084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2337&client=summon