A novel rotated sigmoid weight function for higher performance in heterogeneous deformation measurement with digital image correlation

•A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are influenced by the initial subset size (here ‘initial’ means ‘original’, the initial subset size keepsconstant over iterations, but the equivalent s...

Full description

Saved in:
Bibliographic Details
Published in:Optics and lasers in engineering Vol. 159; p. 107214
Main Authors: Ye, Xiaosen, Zhao, Jiaqing
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2022
Subjects:
ISSN:0143-8166
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are influenced by the initial subset size (here ‘initial’ means ‘original’, the initial subset size keepsconstant over iterations, but the equivalent subset size is varying according to the weight distribution). The RSW-DIC has much better performance than other weight function based methods for unknown heterogeneous displacement.•The spatial resoltion of the proposed method is much better than other DIC methods using the same subset and shape functionorder.•The proposed RSW-DIC has better noise resistance than other participated methods. The Measurement resolution can be reduced by using a big initial subset size without increasing spatial resolution much. Conventional digital image correlation (C-DIC) combined with a rotated Gaussian weight (RGW) function for subset has demonstrated attractive ability in resolving heterogeneous deformation parameters. To further improve the performance, the selection of an optimum weight function becomes the key issue. In this paper, a novel rotated sigmoid weight (RSW) function is proposed. RSW function aims to get a more uniform weight distribution near the subset center, and to realize the continuous change of the equivalent subset size as well. The performance of the RSW function is compared with the Gaussian weight (GW) function, RGW function, the rotated inverse distance weight (RIDW) function and the inverse distance square weight (RIDSW) function through Star 5 image set from the DIC challenge 2.0 and the simulated image set. A total of six methods with different weight functions and rotated weights are systematically compared. The experiment results clearly show that DIC combined with RSW function (i.e. RSW-DIC) has the best spatial resolution without sacrificing much measurement resolution. The spatial resolution of RSW-DIC is only about half of the other methods for both first- and second-order shape functions when a big initial subset size is adopted.
AbstractList •A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are influenced by the initial subset size (here ‘initial’ means ‘original’, the initial subset size keepsconstant over iterations, but the equivalent subset size is varying according to the weight distribution). The RSW-DIC has much better performance than other weight function based methods for unknown heterogeneous displacement.•The spatial resoltion of the proposed method is much better than other DIC methods using the same subset and shape functionorder.•The proposed RSW-DIC has better noise resistance than other participated methods. The Measurement resolution can be reduced by using a big initial subset size without increasing spatial resolution much. Conventional digital image correlation (C-DIC) combined with a rotated Gaussian weight (RGW) function for subset has demonstrated attractive ability in resolving heterogeneous deformation parameters. To further improve the performance, the selection of an optimum weight function becomes the key issue. In this paper, a novel rotated sigmoid weight (RSW) function is proposed. RSW function aims to get a more uniform weight distribution near the subset center, and to realize the continuous change of the equivalent subset size as well. The performance of the RSW function is compared with the Gaussian weight (GW) function, RGW function, the rotated inverse distance weight (RIDW) function and the inverse distance square weight (RIDSW) function through Star 5 image set from the DIC challenge 2.0 and the simulated image set. A total of six methods with different weight functions and rotated weights are systematically compared. The experiment results clearly show that DIC combined with RSW function (i.e. RSW-DIC) has the best spatial resolution without sacrificing much measurement resolution. The spatial resolution of RSW-DIC is only about half of the other methods for both first- and second-order shape functions when a big initial subset size is adopted.
ArticleNumber 107214
Author Ye, Xiaosen
Zhao, Jiaqing
Author_xml – sequence: 1
  givenname: Xiaosen
  surname: Ye
  fullname: Ye, Xiaosen
– sequence: 2
  givenname: Jiaqing
  surname: Zhao
  fullname: Zhao, Jiaqing
  email: jqzhao@mail.tsinghua.edu.cn
BookMark eNqNkM9OAyEQhznUxFZ9BnmBrUB32fbgoWn8lzTxomfCwrBLswsN0Da-gM8tbY0HL3oizMw3md83QSPnHSB0S8mUEsrvNlO_Tb2M4NopI4zlas1oOUJjQstZMaecX6JJjBuSp0tKx-hziZ3fQ4-DTzKBxtG2g7caH8C2XcJm51Sy3mHjA-5yCQLeQsi_QToF2DrcQYLgW3DgdxFrOPVOzAAy7gIM4BI-2NRhbVubZI_tIFvAyocA_Wn0Gl0Y2Ue4-X6v0Pvjw9vquVi_Pr2slutCsbJKhQYFlDdmPm8oqw2vmdZUQU2laiivSmkYrYHXFTE5LyULkFJVC9VoTUzD-OwK3Z_3quBjDGCEygcdL0hB2l5QIo4ixUb8iBRHkeIsMvP1L34bcpjw8Q9yeSYhx9tbCCIqC1mhtgFUEtrbP3d8AQw7nLc
CitedBy_id crossref_primary_10_1016_j_optlaseng_2023_107566
crossref_primary_10_3390_su151813783
crossref_primary_10_1016_j_optlastec_2025_113240
crossref_primary_10_1016_j_optlastec_2024_112332
crossref_primary_10_1016_j_optlaseng_2023_107492
crossref_primary_10_1016_j_jallcom_2025_181868
crossref_primary_10_1016_j_optlastec_2023_109420
crossref_primary_10_3390_rs15061591
Cites_doi 10.1364/AO.49.005501
10.1007/s11340-006-9005-9
10.1111/j.1475-1305.2005.00227.x
10.1016/j.optlaseng.2020.106308
10.1016/j.optlaseng.2019.105907
10.1111/j.1475-1305.2008.00592.x
10.1111/str.12066
10.1007/BF02410987
10.1007/s11340-021-00806-6
10.1364/AO.48.001535
10.1007/s11340-021-00790-x
10.1111/str.12134
10.1117/1.OE.55.12.124104
10.1364/OE.16.007037
10.1364/OE.23.019242
10.1023/B:VISI.0000011205.11775.fd
10.1088/0957-0233/26/4/045202
10.1061/(ASCE)0887-3801(2004)18:1(46)
10.1007/s11340-018-00455-2
10.1016/j.optlaseng.2013.07.016
10.1016/S0262-8856(03)00137-9
10.1007/s11340-017-0268-0
10.1007/s11340-012-9639-8
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2022.107214
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_optlaseng_2022_107214
S0143816622002676
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABDPE
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSH
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c245t-dece16bf88b127f672dd1ce71acb1654af217e6750f143109eaac59cbdd0fb263
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000919354000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Sat Nov 29 07:25:38 EST 2025
Tue Nov 18 22:41:42 EST 2025
Sun Apr 06 06:56:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Digital image correlation
Self-adaptive algorithm
Heterogeneous deformation measurement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c245t-dece16bf88b127f672dd1ce71acb1654af217e6750f143109eaac59cbdd0fb263
ParticipantIDs crossref_citationtrail_10_1016_j_optlaseng_2022_107214
crossref_primary_10_1016_j_optlaseng_2022_107214
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2022_107214
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baker, Matthews (bib0026) 2004; 56
Ye, Zhao (bib0022) 2022; 62
Pan (bib0025) 2014; 50
Kehoe, Lynch, Guénebaut (bib0011) 2006
Wang, Li, Tong, Ruan (bib0017) 2007; 47
Tu, Liu (bib0005) 2017; 57
Zhao (bib0018) 2016; 55
Rossi, Lava, Pierron, Debruyne, Sasso (bib0007) 2015; 51
Wang, Pan (bib0019) 2019; 59
Boukhtache, Abdelouahab, Berry, Blaysat, Grédiac, Sur (bib0028) 2021; 136
Pan (bib0027) 2009; 48
Schreier, Sutton (bib0012) 2002; 42
Pan, Xie, Wang (bib0003) 2010; 49
Su, Zhang, Gao, Xu, Wu (bib0009) 2015; 23
Yuan, Huang, Peng, Xiong, Fang, Yuan (bib0021) 2014; 52
Tong (bib0006) 2005; 41
Yu, Pan (bib0014) 2015; 26
Schreier, Orteu, Sutton (bib0004) 2009
Zitová, Flusser (bib0010) 2003; 21
Huizinga, Klein, Poot (bib0008) 2014; vol. 8545 LNCS
Wang, Sutton, Bruck, Schreier (bib0002) 2009; 45
Pan, Xie, Wang, Qian, Wang (bib0001) 2008; 16
Bai, Xu, Zhu, Lei (bib0013) 2020; 126
Liu, Iskander (bib0016) 2004; 18
Pan, Xie, Wang, Qian, Wang (bib0015) 2008; 16
Huang, Pan, Peng, Yuan, Xiong, Fang (bib0020) 2013; 53
P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, V. Couty, D. Deb, S. Fayad, M. Iadicola, S. Jaminion, P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, and C. Couture, "DIC challenge 2.0 : developing images and guidelines for evaluating accuracy and resolution of 2D analyses focus on the metrological efficiency indicator to cite this version: HAL Id: hal-03427288, 0–20, (2021).
Tu (10.1016/j.optlaseng.2022.107214_bib0005) 2017; 57
Rossi (10.1016/j.optlaseng.2022.107214_bib0007) 2015; 51
Huizinga (10.1016/j.optlaseng.2022.107214_bib0008) 2014; vol. 8545 LNCS
Schreier (10.1016/j.optlaseng.2022.107214_bib0012) 2002; 42
Pan (10.1016/j.optlaseng.2022.107214_bib0025) 2014; 50
Pan (10.1016/j.optlaseng.2022.107214_bib0015) 2008; 16
Huang (10.1016/j.optlaseng.2022.107214_bib0020) 2013; 53
Pan (10.1016/j.optlaseng.2022.107214_bib0003) 2010; 49
Yuan (10.1016/j.optlaseng.2022.107214_bib0021) 2014; 52
10.1016/j.optlaseng.2022.107214_bib0023
Ye (10.1016/j.optlaseng.2022.107214_bib0022) 2022; 62
Tong (10.1016/j.optlaseng.2022.107214_bib0006) 2005; 41
Su (10.1016/j.optlaseng.2022.107214_bib0009) 2015; 23
Boukhtache (10.1016/j.optlaseng.2022.107214_bib0028) 2021; 136
Liu (10.1016/j.optlaseng.2022.107214_bib0016) 2004; 18
Zhao (10.1016/j.optlaseng.2022.107214_bib0018) 2016; 55
Pan (10.1016/j.optlaseng.2022.107214_bib0001) 2008; 16
Wang (10.1016/j.optlaseng.2022.107214_bib0017) 2007; 47
Yu (10.1016/j.optlaseng.2022.107214_bib0014) 2015; 26
Kehoe (10.1016/j.optlaseng.2022.107214_bib0011) 2006
Wang (10.1016/j.optlaseng.2022.107214_bib0019) 2019; 59
Zitová (10.1016/j.optlaseng.2022.107214_bib0010) 2003; 21
Pan (10.1016/j.optlaseng.2022.107214_bib0027) 2009; 48
Schreier (10.1016/j.optlaseng.2022.107214_bib0004) 2009
Baker (10.1016/j.optlaseng.2022.107214_bib0026) 2004; 56
Bai (10.1016/j.optlaseng.2022.107214_bib0013) 2020; 126
Wang (10.1016/j.optlaseng.2022.107214_bib0002) 2009; 45
References_xml – volume: 41
  start-page: 167
  year: 2005
  end-page: 175
  ident: bib0006
  article-title: An evaluation of digital image correlation criteria for strain mapping applications
  publication-title: Strain
– volume: 52
  start-page: 75
  year: 2014
  end-page: 85
  ident: bib0021
  article-title: Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion
  publication-title: Opt Lasers Eng
– year: 2009
  ident: bib0004
  publication-title: Theory and applications
– volume: vol. 8545 LNCS
  start-page: 11
  year: 2014
  end-page: 20
  ident: bib0008
  article-title: Fast multidimensional B-spline interpolation using template metaprogramming
  publication-title: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)
– volume: 55
  year: 2016
  ident: bib0018
  article-title: Deformation measurement using digital image correlation by adaptively adjusting the parameters
  publication-title: Opt Eng
– volume: 23
  start-page: 19242
  year: 2015
  ident: bib0009
  article-title: Fourier-based interpolation bias prediction in digital image correlation
  publication-title: Opt Express
– volume: 18
  start-page: 46
  year: 2004
  end-page: 57
  ident: bib0016
  article-title: Adaptive cross correlation for imaging displacements in soils
  publication-title: J Comput Civ Eng
– volume: 50
  start-page: 48
  year: 2014
  end-page: 56
  ident: bib0025
  article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm
  publication-title: Strain
– volume: 48
  start-page: 1535
  year: 2009
  end-page: 1542
  ident: bib0027
  article-title: Reliability-guided digital image correlation for image deformation measurement
  publication-title: Appl Opt
– volume: 126
  year: 2020
  ident: bib0013
  article-title: A novel method to compensate systematic errors due to undermatched shape functions in digital image correlation
  publication-title: Opt Lasers Eng
– volume: 42
  start-page: 303
  year: 2002
  end-page: 310
  ident: bib0012
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
– volume: 16
  start-page: 7037
  year: 2008
  ident: bib0015
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
– volume: 62
  start-page: 271
  year: 2022
  end-page: 286
  ident: bib0022
  article-title: Adaptive rotated Gaussian weighted digital image correlation (RGW-DIC) for heterogeneous deformation measurement
  publication-title: Exp Mech
– reference: P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, V. Couty, D. Deb, S. Fayad, M. Iadicola, S. Jaminion, P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, and C. Couture, "DIC challenge 2.0 : developing images and guidelines for evaluating accuracy and resolution of 2D analyses focus on the metrological efficiency indicator to cite this version: HAL Id: hal-03427288, 0–20, (2021).
– volume: 136
  year: 2021
  ident: bib0028
  article-title: When deep learning meets digital image correlation
  publication-title: Opt Lasers Eng
– volume: 49
  start-page: 5501
  year: 2010
  end-page: 5509
  ident: bib0003
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl Opt
– start-page: 1874
  year: 2006
  end-page: 1881
  ident: bib0011
  article-title: Measurement of deformation and strain in first level C4 interconnect and stacked die using optical digital image correlation
  publication-title: IMAPS International conference and exhibition on device packaging - co-located with the global business council, GBC 2006 Spring Conference
– volume: 47
  start-page: 701
  year: 2007
  end-page: 707
  ident: bib0017
  article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images
  publication-title: Exp Mech
– volume: 59
  start-page: 149
  year: 2019
  end-page: 162
  ident: bib0019
  article-title: Self-adaptive digital volume correlation for unknown deformation fields
  publication-title: Exp Mech
– volume: 26
  year: 2015
  ident: bib0014
  article-title: The errors in digital image correlation due to overmatched shape functions
  publication-title: Meas Sci Technol
– volume: 45
  start-page: 160
  year: 2009
  end-page: 178
  ident: bib0002
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
  publication-title: Strain
– volume: 53
  start-page: 505
  year: 2013
  end-page: 512
  ident: bib0020
  article-title: Digital image correlation with self-adaptive Gaussian windows
  publication-title: Exp Mech
– volume: 57
  start-page: 783
  year: 2017
  end-page: 799
  ident: bib0005
  article-title: An error criterion in digital image correlation for unknown deformation fields and its application of parameters selection
  publication-title: Exp Mech
– volume: 21
  start-page: 977
  year: 2003
  end-page: 1000
  ident: bib0010
  article-title: Image registration methods: a survey
  publication-title: Image Vis Comput
– volume: 51
  start-page: 206
  year: 2015
  end-page: 222
  ident: bib0007
  article-title: Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM
  publication-title: Strain
– volume: 56
  start-page: 221
  year: 2004
  end-page: 255
  ident: bib0026
  article-title: Lucas-Kanade 20 years on: a unifying framework
  publication-title: Int J Comput Vis
– volume: 16
  start-page: 7037
  year: 2008
  ident: bib0001
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
– volume: 49
  start-page: 5501
  year: 2010
  ident: 10.1016/j.optlaseng.2022.107214_bib0003
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl Opt
  doi: 10.1364/AO.49.005501
– volume: vol. 8545 LNCS
  start-page: 11
  year: 2014
  ident: 10.1016/j.optlaseng.2022.107214_bib0008
  article-title: Fast multidimensional B-spline interpolation using template metaprogramming
– volume: 47
  start-page: 701
  year: 2007
  ident: 10.1016/j.optlaseng.2022.107214_bib0017
  article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images
  publication-title: Exp Mech
  doi: 10.1007/s11340-006-9005-9
– volume: 41
  start-page: 167
  year: 2005
  ident: 10.1016/j.optlaseng.2022.107214_bib0006
  article-title: An evaluation of digital image correlation criteria for strain mapping applications
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2005.00227.x
– volume: 136
  year: 2021
  ident: 10.1016/j.optlaseng.2022.107214_bib0028
  article-title: When deep learning meets digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2020.106308
– volume: 126
  year: 2020
  ident: 10.1016/j.optlaseng.2022.107214_bib0013
  article-title: A novel method to compensate systematic errors due to undermatched shape functions in digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2019.105907
– year: 2009
  ident: 10.1016/j.optlaseng.2022.107214_bib0004
  article-title: Image correlation for shape, motion and deformation measurements: basic concepts
– volume: 45
  start-page: 160
  year: 2009
  ident: 10.1016/j.optlaseng.2022.107214_bib0002
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2008.00592.x
– volume: 50
  start-page: 48
  year: 2014
  ident: 10.1016/j.optlaseng.2022.107214_bib0025
  article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm
  publication-title: Strain
  doi: 10.1111/str.12066
– volume: 42
  start-page: 303
  year: 2002
  ident: 10.1016/j.optlaseng.2022.107214_bib0012
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
  doi: 10.1007/BF02410987
– ident: 10.1016/j.optlaseng.2022.107214_bib0023
  doi: 10.1007/s11340-021-00806-6
– volume: 48
  start-page: 1535
  year: 2009
  ident: 10.1016/j.optlaseng.2022.107214_bib0027
  article-title: Reliability-guided digital image correlation for image deformation measurement
  publication-title: Appl Opt
  doi: 10.1364/AO.48.001535
– volume: 62
  start-page: 271
  year: 2022
  ident: 10.1016/j.optlaseng.2022.107214_bib0022
  article-title: Adaptive rotated Gaussian weighted digital image correlation (RGW-DIC) for heterogeneous deformation measurement
  publication-title: Exp Mech
  doi: 10.1007/s11340-021-00790-x
– volume: 51
  start-page: 206
  year: 2015
  ident: 10.1016/j.optlaseng.2022.107214_bib0007
  article-title: Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM
  publication-title: Strain
  doi: 10.1111/str.12134
– start-page: 1874
  year: 2006
  ident: 10.1016/j.optlaseng.2022.107214_bib0011
  article-title: Measurement of deformation and strain in first level C4 interconnect and stacked die using optical digital image correlation
– volume: 55
  year: 2016
  ident: 10.1016/j.optlaseng.2022.107214_bib0018
  article-title: Deformation measurement using digital image correlation by adaptively adjusting the parameters
  publication-title: Opt Eng
  doi: 10.1117/1.OE.55.12.124104
– volume: 16
  start-page: 7037
  year: 2008
  ident: 10.1016/j.optlaseng.2022.107214_bib0015
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
  doi: 10.1364/OE.16.007037
– volume: 16
  start-page: 7037
  year: 2008
  ident: 10.1016/j.optlaseng.2022.107214_bib0001
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
  doi: 10.1364/OE.16.007037
– volume: 23
  start-page: 19242
  year: 2015
  ident: 10.1016/j.optlaseng.2022.107214_bib0009
  article-title: Fourier-based interpolation bias prediction in digital image correlation
  publication-title: Opt Express
  doi: 10.1364/OE.23.019242
– volume: 56
  start-page: 221
  year: 2004
  ident: 10.1016/j.optlaseng.2022.107214_bib0026
  article-title: Lucas-Kanade 20 years on: a unifying framework
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 26
  year: 2015
  ident: 10.1016/j.optlaseng.2022.107214_bib0014
  article-title: The errors in digital image correlation due to overmatched shape functions
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/26/4/045202
– volume: 18
  start-page: 46
  year: 2004
  ident: 10.1016/j.optlaseng.2022.107214_bib0016
  article-title: Adaptive cross correlation for imaging displacements in soils
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2004)18:1(46)
– volume: 59
  start-page: 149
  year: 2019
  ident: 10.1016/j.optlaseng.2022.107214_bib0019
  article-title: Self-adaptive digital volume correlation for unknown deformation fields
  publication-title: Exp Mech
  doi: 10.1007/s11340-018-00455-2
– volume: 52
  start-page: 75
  year: 2014
  ident: 10.1016/j.optlaseng.2022.107214_bib0021
  article-title: Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2013.07.016
– volume: 21
  start-page: 977
  year: 2003
  ident: 10.1016/j.optlaseng.2022.107214_bib0010
  article-title: Image registration methods: a survey
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(03)00137-9
– volume: 57
  start-page: 783
  year: 2017
  ident: 10.1016/j.optlaseng.2022.107214_bib0005
  article-title: An error criterion in digital image correlation for unknown deformation fields and its application of parameters selection
  publication-title: Exp Mech
  doi: 10.1007/s11340-017-0268-0
– volume: 53
  start-page: 505
  year: 2013
  ident: 10.1016/j.optlaseng.2022.107214_bib0020
  article-title: Digital image correlation with self-adaptive Gaussian windows
  publication-title: Exp Mech
  doi: 10.1007/s11340-012-9639-8
SSID ssj0016411
Score 2.3881893
Snippet •A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107214
SubjectTerms Digital image correlation
Heterogeneous deformation measurement
Self-adaptive algorithm
Title A novel rotated sigmoid weight function for higher performance in heterogeneous deformation measurement with digital image correlation
URI https://dx.doi.org/10.1016/j.optlaseng.2022.107214
Volume 159
WOSCitedRecordID wos000919354000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016411
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZgFyQ4IFhALC_5wC3KKnETJ-FWoUWA0MJhQRWXyK90s2qT0HQfv4DfzUzsJimstCDEJaqsuo78fbXH429mCHkVap1JpbhvMi79SKvMF2EU-kbg_hlpHnURcl8_JkdH6WyWfXYX7W1XTiCpqvTyMmv-K9TQBmBj6OxfwN3_KDTAZwAdngA7PP8I-KlX1edm4a1qtCO115bzZV1q76Jzgnq4kfX6whOr8mhG0QNlBcYjTHYNAxjUx2rTBzh6y8GjaD24upxj1RGvXKL2R2Gpj8WAtTN6PzV9Lmiw1TFiGPOUDIkQB78tAj4rRd0OAWrfToS9HCrF9813nZeCsV8UH334zKBVst7MiY8Xl1vLsc0Q_tvSbr0Mpwd1s8Z3reYHOA60wxk2GnazXmOIsrXuVpShDoUn_CbZZUmcwdK3O31_OPvQXzbxKLRlK93bbMkArxzuaiNmZJgc3yf33ImCTi0THpAbptojd0d5JvfI7U7nq9qH5MeUduygjh3UsYNadtANOyhgTi076IgdtKzoFjvoiB10xA6K7KCOHbRjBx2x4xH58vbw-M0735Xi8BWL4rWvjTIhl0WaypAlBU-Y1qEySSiUxHg4UcDR1sDhMyhgFsMgM0KoOFNS66CQjE8ek52qrswTQplgEjZVnkmuIy3jtAg4M7GIExmYZJLtE76Z21y5PPVYLmWRbwSJp3kPSo6g5BaUfRL0HRubquX6Lq834OXO4rSWZA6su67z03_p_IzcGf4mz8nOenVmXpBb6nxdtquXjqE_AYQltMk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+rotated+sigmoid+weight+function+for+higher+performance+in+heterogeneous+deformation+measurement+with+digital+image+correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Ye%2C+Xiaosen&rft.au=Zhao%2C+Jiaqing&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.volume=159&rft_id=info:doi/10.1016%2Fj.optlaseng.2022.107214&rft.externalDocID=S0143816622002676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon