A novel rotated sigmoid weight function for higher performance in heterogeneous deformation measurement with digital image correlation
•A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are influenced by the initial subset size (here ‘initial’ means ‘original’, the initial subset size keepsconstant over iterations, but the equivalent s...
Gespeichert in:
| Veröffentlicht in: | Optics and lasers in engineering Jg. 159; S. 107214 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2022
|
| Schlagworte: | |
| ISSN: | 0143-8166 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are influenced by the initial subset size (here ‘initial’ means ‘original’, the initial subset size keepsconstant over iterations, but the equivalent subset size is varying according to the weight distribution). The RSW-DIC has much better performance than other weight function based methods for unknown heterogeneous displacement.•The spatial resoltion of the proposed method is much better than other DIC methods using the same subset and shape functionorder.•The proposed RSW-DIC has better noise resistance than other participated methods. The Measurement resolution can be reduced by using a big initial subset size without increasing spatial resolution much.
Conventional digital image correlation (C-DIC) combined with a rotated Gaussian weight (RGW) function for subset has demonstrated attractive ability in resolving heterogeneous deformation parameters. To further improve the performance, the selection of an optimum weight function becomes the key issue. In this paper, a novel rotated sigmoid weight (RSW) function is proposed. RSW function aims to get a more uniform weight distribution near the subset center, and to realize the continuous change of the equivalent subset size as well. The performance of the RSW function is compared with the Gaussian weight (GW) function, RGW function, the rotated inverse distance weight (RIDW) function and the inverse distance square weight (RIDSW) function through Star 5 image set from the DIC challenge 2.0 and the simulated image set. A total of six methods with different weight functions and rotated weights are systematically compared. The experiment results clearly show that DIC combined with RSW function (i.e. RSW-DIC) has the best spatial resolution without sacrificing much measurement resolution. The spatial resolution of RSW-DIC is only about half of the other methods for both first- and second-order shape functions when a big initial subset size is adopted. |
|---|---|
| AbstractList | •A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are influenced by the initial subset size (here ‘initial’ means ‘original’, the initial subset size keepsconstant over iterations, but the equivalent subset size is varying according to the weight distribution). The RSW-DIC has much better performance than other weight function based methods for unknown heterogeneous displacement.•The spatial resoltion of the proposed method is much better than other DIC methods using the same subset and shape functionorder.•The proposed RSW-DIC has better noise resistance than other participated methods. The Measurement resolution can be reduced by using a big initial subset size without increasing spatial resolution much.
Conventional digital image correlation (C-DIC) combined with a rotated Gaussian weight (RGW) function for subset has demonstrated attractive ability in resolving heterogeneous deformation parameters. To further improve the performance, the selection of an optimum weight function becomes the key issue. In this paper, a novel rotated sigmoid weight (RSW) function is proposed. RSW function aims to get a more uniform weight distribution near the subset center, and to realize the continuous change of the equivalent subset size as well. The performance of the RSW function is compared with the Gaussian weight (GW) function, RGW function, the rotated inverse distance weight (RIDW) function and the inverse distance square weight (RIDSW) function through Star 5 image set from the DIC challenge 2.0 and the simulated image set. A total of six methods with different weight functions and rotated weights are systematically compared. The experiment results clearly show that DIC combined with RSW function (i.e. RSW-DIC) has the best spatial resolution without sacrificing much measurement resolution. The spatial resolution of RSW-DIC is only about half of the other methods for both first- and second-order shape functions when a big initial subset size is adopted. |
| ArticleNumber | 107214 |
| Author | Ye, Xiaosen Zhao, Jiaqing |
| Author_xml | – sequence: 1 givenname: Xiaosen surname: Ye fullname: Ye, Xiaosen – sequence: 2 givenname: Jiaqing surname: Zhao fullname: Zhao, Jiaqing email: jqzhao@mail.tsinghua.edu.cn |
| BookMark | eNqNkM9OAyEQhznUxFZ9BnmBrUB32fbgoWn8lzTxomfCwrBLswsN0Da-gM8tbY0HL3oizMw3md83QSPnHSB0S8mUEsrvNlO_Tb2M4NopI4zlas1oOUJjQstZMaecX6JJjBuSp0tKx-hziZ3fQ4-DTzKBxtG2g7caH8C2XcJm51Sy3mHjA-5yCQLeQsi_QToF2DrcQYLgW3DgdxFrOPVOzAAy7gIM4BI-2NRhbVubZI_tIFvAyocA_Wn0Gl0Y2Ue4-X6v0Pvjw9vquVi_Pr2slutCsbJKhQYFlDdmPm8oqw2vmdZUQU2laiivSmkYrYHXFTE5LyULkFJVC9VoTUzD-OwK3Z_3quBjDGCEygcdL0hB2l5QIo4ixUb8iBRHkeIsMvP1L34bcpjw8Q9yeSYhx9tbCCIqC1mhtgFUEtrbP3d8AQw7nLc |
| CitedBy_id | crossref_primary_10_1016_j_optlaseng_2023_107566 crossref_primary_10_3390_su151813783 crossref_primary_10_1016_j_optlastec_2025_113240 crossref_primary_10_1016_j_optlastec_2024_112332 crossref_primary_10_1016_j_optlaseng_2023_107492 crossref_primary_10_1016_j_jallcom_2025_181868 crossref_primary_10_1016_j_optlastec_2023_109420 crossref_primary_10_3390_rs15061591 |
| Cites_doi | 10.1364/AO.49.005501 10.1007/s11340-006-9005-9 10.1111/j.1475-1305.2005.00227.x 10.1016/j.optlaseng.2020.106308 10.1016/j.optlaseng.2019.105907 10.1111/j.1475-1305.2008.00592.x 10.1111/str.12066 10.1007/BF02410987 10.1007/s11340-021-00806-6 10.1364/AO.48.001535 10.1007/s11340-021-00790-x 10.1111/str.12134 10.1117/1.OE.55.12.124104 10.1364/OE.16.007037 10.1364/OE.23.019242 10.1023/B:VISI.0000011205.11775.fd 10.1088/0957-0233/26/4/045202 10.1061/(ASCE)0887-3801(2004)18:1(46) 10.1007/s11340-018-00455-2 10.1016/j.optlaseng.2013.07.016 10.1016/S0262-8856(03)00137-9 10.1007/s11340-017-0268-0 10.1007/s11340-012-9639-8 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlaseng.2022.107214 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_optlaseng_2022_107214 S0143816622002676 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABDPE ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSH SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c245t-dece16bf88b127f672dd1ce71acb1654af217e6750f143109eaac59cbdd0fb263 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000919354000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-8166 |
| IngestDate | Sat Nov 29 07:25:38 EST 2025 Tue Nov 18 22:41:42 EST 2025 Sun Apr 06 06:56:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Digital image correlation Self-adaptive algorithm Heterogeneous deformation measurement |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c245t-dece16bf88b127f672dd1ce71acb1654af217e6750f143109eaac59cbdd0fb263 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_optlaseng_2022_107214 crossref_primary_10_1016_j_optlaseng_2022_107214 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2022_107214 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics and lasers in engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Baker, Matthews (bib0026) 2004; 56 Ye, Zhao (bib0022) 2022; 62 Pan (bib0025) 2014; 50 Kehoe, Lynch, Guénebaut (bib0011) 2006 Wang, Li, Tong, Ruan (bib0017) 2007; 47 Tu, Liu (bib0005) 2017; 57 Zhao (bib0018) 2016; 55 Rossi, Lava, Pierron, Debruyne, Sasso (bib0007) 2015; 51 Wang, Pan (bib0019) 2019; 59 Boukhtache, Abdelouahab, Berry, Blaysat, Grédiac, Sur (bib0028) 2021; 136 Pan (bib0027) 2009; 48 Schreier, Sutton (bib0012) 2002; 42 Pan, Xie, Wang (bib0003) 2010; 49 Su, Zhang, Gao, Xu, Wu (bib0009) 2015; 23 Yuan, Huang, Peng, Xiong, Fang, Yuan (bib0021) 2014; 52 Tong (bib0006) 2005; 41 Yu, Pan (bib0014) 2015; 26 Schreier, Orteu, Sutton (bib0004) 2009 Zitová, Flusser (bib0010) 2003; 21 Huizinga, Klein, Poot (bib0008) 2014; vol. 8545 LNCS Wang, Sutton, Bruck, Schreier (bib0002) 2009; 45 Pan, Xie, Wang, Qian, Wang (bib0001) 2008; 16 Bai, Xu, Zhu, Lei (bib0013) 2020; 126 Liu, Iskander (bib0016) 2004; 18 Pan, Xie, Wang, Qian, Wang (bib0015) 2008; 16 Huang, Pan, Peng, Yuan, Xiong, Fang (bib0020) 2013; 53 P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, V. Couty, D. Deb, S. Fayad, M. Iadicola, S. Jaminion, P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, and C. Couture, "DIC challenge 2.0 : developing images and guidelines for evaluating accuracy and resolution of 2D analyses focus on the metrological efficiency indicator to cite this version: HAL Id: hal-03427288, 0–20, (2021). Tu (10.1016/j.optlaseng.2022.107214_bib0005) 2017; 57 Rossi (10.1016/j.optlaseng.2022.107214_bib0007) 2015; 51 Huizinga (10.1016/j.optlaseng.2022.107214_bib0008) 2014; vol. 8545 LNCS Schreier (10.1016/j.optlaseng.2022.107214_bib0012) 2002; 42 Pan (10.1016/j.optlaseng.2022.107214_bib0025) 2014; 50 Pan (10.1016/j.optlaseng.2022.107214_bib0015) 2008; 16 Huang (10.1016/j.optlaseng.2022.107214_bib0020) 2013; 53 Pan (10.1016/j.optlaseng.2022.107214_bib0003) 2010; 49 Yuan (10.1016/j.optlaseng.2022.107214_bib0021) 2014; 52 10.1016/j.optlaseng.2022.107214_bib0023 Ye (10.1016/j.optlaseng.2022.107214_bib0022) 2022; 62 Tong (10.1016/j.optlaseng.2022.107214_bib0006) 2005; 41 Su (10.1016/j.optlaseng.2022.107214_bib0009) 2015; 23 Boukhtache (10.1016/j.optlaseng.2022.107214_bib0028) 2021; 136 Liu (10.1016/j.optlaseng.2022.107214_bib0016) 2004; 18 Zhao (10.1016/j.optlaseng.2022.107214_bib0018) 2016; 55 Pan (10.1016/j.optlaseng.2022.107214_bib0001) 2008; 16 Wang (10.1016/j.optlaseng.2022.107214_bib0017) 2007; 47 Yu (10.1016/j.optlaseng.2022.107214_bib0014) 2015; 26 Kehoe (10.1016/j.optlaseng.2022.107214_bib0011) 2006 Wang (10.1016/j.optlaseng.2022.107214_bib0019) 2019; 59 Zitová (10.1016/j.optlaseng.2022.107214_bib0010) 2003; 21 Pan (10.1016/j.optlaseng.2022.107214_bib0027) 2009; 48 Schreier (10.1016/j.optlaseng.2022.107214_bib0004) 2009 Baker (10.1016/j.optlaseng.2022.107214_bib0026) 2004; 56 Bai (10.1016/j.optlaseng.2022.107214_bib0013) 2020; 126 Wang (10.1016/j.optlaseng.2022.107214_bib0002) 2009; 45 |
| References_xml | – volume: 41 start-page: 167 year: 2005 end-page: 175 ident: bib0006 article-title: An evaluation of digital image correlation criteria for strain mapping applications publication-title: Strain – volume: 52 start-page: 75 year: 2014 end-page: 85 ident: bib0021 article-title: Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion publication-title: Opt Lasers Eng – year: 2009 ident: bib0004 publication-title: Theory and applications – volume: vol. 8545 LNCS start-page: 11 year: 2014 end-page: 20 ident: bib0008 article-title: Fast multidimensional B-spline interpolation using template metaprogramming publication-title: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics) – volume: 55 year: 2016 ident: bib0018 article-title: Deformation measurement using digital image correlation by adaptively adjusting the parameters publication-title: Opt Eng – volume: 23 start-page: 19242 year: 2015 ident: bib0009 article-title: Fourier-based interpolation bias prediction in digital image correlation publication-title: Opt Express – volume: 18 start-page: 46 year: 2004 end-page: 57 ident: bib0016 article-title: Adaptive cross correlation for imaging displacements in soils publication-title: J Comput Civ Eng – volume: 50 start-page: 48 year: 2014 end-page: 56 ident: bib0025 article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm publication-title: Strain – volume: 48 start-page: 1535 year: 2009 end-page: 1542 ident: bib0027 article-title: Reliability-guided digital image correlation for image deformation measurement publication-title: Appl Opt – volume: 126 year: 2020 ident: bib0013 article-title: A novel method to compensate systematic errors due to undermatched shape functions in digital image correlation publication-title: Opt Lasers Eng – volume: 42 start-page: 303 year: 2002 end-page: 310 ident: bib0012 article-title: Systematic errors in digital image correlation due to undermatched subset shape functions publication-title: Exp Mech – volume: 16 start-page: 7037 year: 2008 ident: bib0015 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express – volume: 62 start-page: 271 year: 2022 end-page: 286 ident: bib0022 article-title: Adaptive rotated Gaussian weighted digital image correlation (RGW-DIC) for heterogeneous deformation measurement publication-title: Exp Mech – reference: P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, V. Couty, D. Deb, S. Fayad, M. Iadicola, S. Jaminion, P. Reu, B. Blaysat, E. Andò, K. Bhattacharya, and C. Couture, "DIC challenge 2.0 : developing images and guidelines for evaluating accuracy and resolution of 2D analyses focus on the metrological efficiency indicator to cite this version: HAL Id: hal-03427288, 0–20, (2021). – volume: 136 year: 2021 ident: bib0028 article-title: When deep learning meets digital image correlation publication-title: Opt Lasers Eng – volume: 49 start-page: 5501 year: 2010 end-page: 5509 ident: bib0003 article-title: Equivalence of digital image correlation criteria for pattern matching publication-title: Appl Opt – start-page: 1874 year: 2006 end-page: 1881 ident: bib0011 article-title: Measurement of deformation and strain in first level C4 interconnect and stacked die using optical digital image correlation publication-title: IMAPS International conference and exhibition on device packaging - co-located with the global business council, GBC 2006 Spring Conference – volume: 47 start-page: 701 year: 2007 end-page: 707 ident: bib0017 article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images publication-title: Exp Mech – volume: 59 start-page: 149 year: 2019 end-page: 162 ident: bib0019 article-title: Self-adaptive digital volume correlation for unknown deformation fields publication-title: Exp Mech – volume: 26 year: 2015 ident: bib0014 article-title: The errors in digital image correlation due to overmatched shape functions publication-title: Meas Sci Technol – volume: 45 start-page: 160 year: 2009 end-page: 178 ident: bib0002 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements publication-title: Strain – volume: 53 start-page: 505 year: 2013 end-page: 512 ident: bib0020 article-title: Digital image correlation with self-adaptive Gaussian windows publication-title: Exp Mech – volume: 57 start-page: 783 year: 2017 end-page: 799 ident: bib0005 article-title: An error criterion in digital image correlation for unknown deformation fields and its application of parameters selection publication-title: Exp Mech – volume: 21 start-page: 977 year: 2003 end-page: 1000 ident: bib0010 article-title: Image registration methods: a survey publication-title: Image Vis Comput – volume: 51 start-page: 206 year: 2015 end-page: 222 ident: bib0007 article-title: Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM publication-title: Strain – volume: 56 start-page: 221 year: 2004 end-page: 255 ident: bib0026 article-title: Lucas-Kanade 20 years on: a unifying framework publication-title: Int J Comput Vis – volume: 16 start-page: 7037 year: 2008 ident: bib0001 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express – volume: 49 start-page: 5501 year: 2010 ident: 10.1016/j.optlaseng.2022.107214_bib0003 article-title: Equivalence of digital image correlation criteria for pattern matching publication-title: Appl Opt doi: 10.1364/AO.49.005501 – volume: vol. 8545 LNCS start-page: 11 year: 2014 ident: 10.1016/j.optlaseng.2022.107214_bib0008 article-title: Fast multidimensional B-spline interpolation using template metaprogramming – volume: 47 start-page: 701 year: 2007 ident: 10.1016/j.optlaseng.2022.107214_bib0017 article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images publication-title: Exp Mech doi: 10.1007/s11340-006-9005-9 – volume: 41 start-page: 167 year: 2005 ident: 10.1016/j.optlaseng.2022.107214_bib0006 article-title: An evaluation of digital image correlation criteria for strain mapping applications publication-title: Strain doi: 10.1111/j.1475-1305.2005.00227.x – volume: 136 year: 2021 ident: 10.1016/j.optlaseng.2022.107214_bib0028 article-title: When deep learning meets digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2020.106308 – volume: 126 year: 2020 ident: 10.1016/j.optlaseng.2022.107214_bib0013 article-title: A novel method to compensate systematic errors due to undermatched shape functions in digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.105907 – year: 2009 ident: 10.1016/j.optlaseng.2022.107214_bib0004 article-title: Image correlation for shape, motion and deformation measurements: basic concepts – volume: 45 start-page: 160 year: 2009 ident: 10.1016/j.optlaseng.2022.107214_bib0002 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements publication-title: Strain doi: 10.1111/j.1475-1305.2008.00592.x – volume: 50 start-page: 48 year: 2014 ident: 10.1016/j.optlaseng.2022.107214_bib0025 article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm publication-title: Strain doi: 10.1111/str.12066 – volume: 42 start-page: 303 year: 2002 ident: 10.1016/j.optlaseng.2022.107214_bib0012 article-title: Systematic errors in digital image correlation due to undermatched subset shape functions publication-title: Exp Mech doi: 10.1007/BF02410987 – ident: 10.1016/j.optlaseng.2022.107214_bib0023 doi: 10.1007/s11340-021-00806-6 – volume: 48 start-page: 1535 year: 2009 ident: 10.1016/j.optlaseng.2022.107214_bib0027 article-title: Reliability-guided digital image correlation for image deformation measurement publication-title: Appl Opt doi: 10.1364/AO.48.001535 – volume: 62 start-page: 271 year: 2022 ident: 10.1016/j.optlaseng.2022.107214_bib0022 article-title: Adaptive rotated Gaussian weighted digital image correlation (RGW-DIC) for heterogeneous deformation measurement publication-title: Exp Mech doi: 10.1007/s11340-021-00790-x – volume: 51 start-page: 206 year: 2015 ident: 10.1016/j.optlaseng.2022.107214_bib0007 article-title: Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM publication-title: Strain doi: 10.1111/str.12134 – start-page: 1874 year: 2006 ident: 10.1016/j.optlaseng.2022.107214_bib0011 article-title: Measurement of deformation and strain in first level C4 interconnect and stacked die using optical digital image correlation – volume: 55 year: 2016 ident: 10.1016/j.optlaseng.2022.107214_bib0018 article-title: Deformation measurement using digital image correlation by adaptively adjusting the parameters publication-title: Opt Eng doi: 10.1117/1.OE.55.12.124104 – volume: 16 start-page: 7037 year: 2008 ident: 10.1016/j.optlaseng.2022.107214_bib0015 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express doi: 10.1364/OE.16.007037 – volume: 16 start-page: 7037 year: 2008 ident: 10.1016/j.optlaseng.2022.107214_bib0001 article-title: Study on subset size selection in digital image correlation for speckle patterns publication-title: Opt Express doi: 10.1364/OE.16.007037 – volume: 23 start-page: 19242 year: 2015 ident: 10.1016/j.optlaseng.2022.107214_bib0009 article-title: Fourier-based interpolation bias prediction in digital image correlation publication-title: Opt Express doi: 10.1364/OE.23.019242 – volume: 56 start-page: 221 year: 2004 ident: 10.1016/j.optlaseng.2022.107214_bib0026 article-title: Lucas-Kanade 20 years on: a unifying framework publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000011205.11775.fd – volume: 26 year: 2015 ident: 10.1016/j.optlaseng.2022.107214_bib0014 article-title: The errors in digital image correlation due to overmatched shape functions publication-title: Meas Sci Technol doi: 10.1088/0957-0233/26/4/045202 – volume: 18 start-page: 46 year: 2004 ident: 10.1016/j.optlaseng.2022.107214_bib0016 article-title: Adaptive cross correlation for imaging displacements in soils publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2004)18:1(46) – volume: 59 start-page: 149 year: 2019 ident: 10.1016/j.optlaseng.2022.107214_bib0019 article-title: Self-adaptive digital volume correlation for unknown deformation fields publication-title: Exp Mech doi: 10.1007/s11340-018-00455-2 – volume: 52 start-page: 75 year: 2014 ident: 10.1016/j.optlaseng.2022.107214_bib0021 article-title: Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2013.07.016 – volume: 21 start-page: 977 year: 2003 ident: 10.1016/j.optlaseng.2022.107214_bib0010 article-title: Image registration methods: a survey publication-title: Image Vis Comput doi: 10.1016/S0262-8856(03)00137-9 – volume: 57 start-page: 783 year: 2017 ident: 10.1016/j.optlaseng.2022.107214_bib0005 article-title: An error criterion in digital image correlation for unknown deformation fields and its application of parameters selection publication-title: Exp Mech doi: 10.1007/s11340-017-0268-0 – volume: 53 start-page: 505 year: 2013 ident: 10.1016/j.optlaseng.2022.107214_bib0020 article-title: Digital image correlation with self-adaptive Gaussian windows publication-title: Exp Mech doi: 10.1007/s11340-012-9639-8 |
| SSID | ssj0016411 |
| Score | 2.3881893 |
| Snippet | •A new rotated sigmoid weight (RSW) function based DIC (RSW-DIC) is proposed to tackle the problem that the results of the weight function based DIC are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107214 |
| SubjectTerms | Digital image correlation Heterogeneous deformation measurement Self-adaptive algorithm |
| Title | A novel rotated sigmoid weight function for higher performance in heterogeneous deformation measurement with digital image correlation |
| URI | https://dx.doi.org/10.1016/j.optlaseng.2022.107214 |
| Volume | 159 |
| WOSCitedRecordID | wos000919354000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0143-8166 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016411 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBhIcEAwmxpd84BalipM2TrhV09DGYXAYUsUlcmyny9QmoS1lfwDi7957sfNRVKnswCWqothO_H59_vn5fRDyARZ1HUgZuyKIlQvaL3bTCDeuntChTP0o5aouNsEvL6PpNP46GPxuYmE2c14U0e1tXP1XUcM9EDaGzt5D3G2ncAN-g9DhCmKH6z8JfuIU5UbPnWWJPFI5q3y2KHPl_KqNoA4uZK1_4bXx8qh60QN5AeQRJruEATT6xyrdBjg6i86iaCy4Kp9h1REnX6Dvj8RSH_NO1pb0fqnaXNDA1TFiGPOUdIkQO7stCnyai3LVBah9vxbmcCgXP5pnrZXC93seH43hMnDxjHJL89pk4EZ3MkzVNtqp1o2F4WZYVmt8z2I2xDGGXYvtRNp_LXCt22Hj0XaTtB0l2FFiOnpADn0-jkE3Hk4uzqaf29OocMRMXUv7DVt-gjvfaTfL6TGXq2fkqd1y0ImBynMy0MURedJLRHlEHtWOwHL1gvyZ0Bo-1MKHWvhQAx_awIcCKKiBD-3Bh-YF3YIP7cGH9uBDET7UwofW8KE9-Lwk3z6dXZ2eu7ZWhyv90XjtKi01C9MsilLm8yzkvlJMas6ETDFgTmSw99WwO_UymEXmxVoIOY5lqpSXpX4YHJODoiz0K0IzwXkmozFQZeCPignmST8YcXxUA70-IWEzt4m0ieyxnso82SPfE-K1DSuTy2V_k4-N8BJLSQ3VTACa-xq_vv94b8jj7t_zlhyslz_1O_JQbtb5avne4vIORaC7CQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+rotated+sigmoid+weight+function+for+higher+performance+in+heterogeneous+deformation+measurement+with+digital+image+correlation&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Ye%2C+Xiaosen&rft.au=Zhao%2C+Jiaqing&rft.date=2022-12-01&rft.issn=0143-8166&rft.volume=159&rft.spage=107214&rft_id=info:doi/10.1016%2Fj.optlaseng.2022.107214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2022_107214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |