Joint Principal Component Analysis and Supervised k Means Algorithm via Non-Iterative Analytic Optimization Approach

It is worth noting that the traditional methods for performing both the dimensional reduction and the classification are via the two steps iterative approaches. In this case, performing the dimensional reduction does not consider the classification. On the other hand, the classification is performed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 72; s. 1348 - 1360
Hlavní autoři: Zhang, Zhanbin, Ling, Bingo Wing-Kuen, Huang, Guoheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is worth noting that the traditional methods for performing both the dimensional reduction and the classification are via the two steps iterative approaches. In this case, performing the dimensional reduction does not consider the classification. On the other hand, the classification is performed in the original feature domain and it does not consider the dimensional reduction. Here, the transform matrix only takes an effect on the dimensional reduction, but not on the classification. The synergy between the dimensional reduction and the classification has been ignored. As a result, the overall performance is not optimal. To address this issue, this paper proposes a joint principal component analysis (PCA) and supervised k means approach for performing the dimensional reduction and the classification simultaneously. In particular, both the reconstruction error due to the dimensional reduction as well as the total distance between the cluster centers and the feature vectors in the transformed domain are minimized subject to the unitary condition of the transform matrix. Here, we have two decision variables. They are the transform matrix and the cluster centers, instead of a single decision variable in each iteration in the traditional iterative method. To find the analytical solution of the optimization problem, the first order derivative condition of the optimization problem is first expressed as the matrix equations. However, there is a structure deficiency on the matrix equation. To address this issue, this paper employs the property of the singular matrices of the symmetric matrix for solving these matrix equations with the guarantee of the satisfaction of the structural deficiency. As a result, the analytical form of the solutions is derived. The proposed method is evaluated via performing the mental arithmetic classification based on the electroencephalograms (EEGs) downloaded from the PhysioNet database. The comparisons to the state of the art algorithms for performing the mental arithmetic classification and the conventional methods for finding the solutions of the constrained optimization problems are conducted. The results demonstrate that our proposed method achieves the higher accuracy and requires the lower execution time. This validates the effectiveness and the efficiency of our proposed method.
AbstractList It is worth noting that the traditional methods for performing both the dimensional reduction and the classification are via the two steps iterative approaches. In this case, performing the dimensional reduction does not consider the classification. On the other hand, the classification is performed in the original feature domain and it does not consider the dimensional reduction. Here, the transform matrix only takes an effect on the dimensional reduction, but not on the classification. The synergy between the dimensional reduction and the classification has been ignored. As a result, the overall performance is not optimal. To address this issue, this paper proposes a joint principal component analysis (PCA) and supervised k means approach for performing the dimensional reduction and the classification simultaneously. In particular, both the reconstruction error due to the dimensional reduction as well as the total distance between the cluster centers and the feature vectors in the transformed domain are minimized subject to the unitary condition of the transform matrix. Here, we have two decision variables. They are the transform matrix and the cluster centers, instead of a single decision variable in each iteration in the traditional iterative method. To find the analytical solution of the optimization problem, the first order derivative condition of the optimization problem is first expressed as the matrix equations. However, there is a structure deficiency on the matrix equation. To address this issue, this paper employs the property of the singular matrices of the symmetric matrix for solving these matrix equations with the guarantee of the satisfaction of the structural deficiency. As a result, the analytical form of the solutions is derived. The proposed method is evaluated via performing the mental arithmetic classification based on the electroencephalograms (EEGs) downloaded from the PhysioNet database. The comparisons to the state of the art algorithms for performing the mental arithmetic classification and the conventional methods for finding the solutions of the constrained optimization problems are conducted. The results demonstrate that our proposed method achieves the higher accuracy and requires the lower execution time. This validates the effectiveness and the efficiency of our proposed method.
Author Ling, Bingo Wing-Kuen
Zhang, Zhanbin
Huang, Guoheng
Author_xml – sequence: 1
  givenname: Zhanbin
  orcidid: 0009-0008-3825-0503
  surname: Zhang
  fullname: Zhang, Zhanbin
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, China
– sequence: 2
  givenname: Bingo Wing-Kuen
  orcidid: 0000-0002-0633-7224
  surname: Ling
  fullname: Ling, Bingo Wing-Kuen
  email: yongquanling@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, Guangdong Province, China
– sequence: 3
  givenname: Guoheng
  orcidid: 0000-0002-3640-3229
  surname: Huang
  fullname: Huang, Guoheng
  organization: School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, Guangdong Province, China
BookMark eNpNkM1rAjEQxUOxULW999BDoOe1ySbZ3RxF-mGxVdBCb0s2m62xbrJNomD_-kb0UBiY4fHezPAbgJ6xRgFwi9EIY8QfVsvFKEUpHRGSMU7pBehjTnGCaJ714owYSViRf16BgfcbhDClPOuD8Gq1CXDhtJG6E1s4sW0XN0dtbMT24LWHwtRwueuU22uvavgN35QwHo63X9bpsG7hXgv4bk0yDcqJoPfqlA1awnkXdKt_o2oNHHeds0Kur8FlI7Ze3Zz7EHw8Pa4mL8ls_jydjGeJTCkLSV3xJkO4KmRFFUOMiUIpjqtGVKShEiFCVCPqjGaS5nnOOJeyyAmveV0XIm3IENyf9sazPzvlQ7mxOxdf82XKM45YmuZ5dKGTSzrrvVNN2TndCncoMSqPbMvItjyyLc9sY-TuFNFKqX92SrJY5A8jznmE
CODEN ITPRED
Cites_doi 10.1016/j.patrec.2014.11.017
10.1016/j.neucom.2005.06.021
10.1109/tcsi.2004.834493
10.3390/electronics10091079
10.3390/e23080931
10.1016/j.cosrev.2021.100378
10.1109/tpami.2004.1261097
10.1016/j.eswa.2020.114350
10.1109/tsp.2008.2008254
10.1016/j.compeleceng.2022.107684
10.1023/a:1026065325419
10.1109/tnn.2006.873281
10.1145/1015330.1015408
10.1155/2018/9385947
10.3390/data4010014
10.1016/j.patrec.2004.01.011
10.1007/s521-001-8051-z
10.1109/tim.2023.3265114
10.1109/tsp.2020.3001906
10.1109/embc.2013.6611107
10.3390/e21040376
10.1007/s10107-012-0584-1
10.1145/1553374.1553501
10.1109/tnnls.2022.3159573
10.1080/00949655.2017.1327588
10.1561/2200000058
10.1016/j.procs.2019.01.008
10.1561/2200000016
10.23919/eusipco47968.2020.9287358
10.1007/s00357-019-09349-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2024.3365944
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1360
ExternalDocumentID 10_1109_TSP_2024_3365944
10436436
Genre orig-research
GrantInformation_xml – fundername: Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent
  grantid: 501130144
– fundername: Hong Kong Innovation and Technology Commission, Enterprise Support Scheme
  grantid: S/E/070/17
– fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: U1701266; 61671163; 62071128; 61901123
  funderid: 10.13039/501100001809
– fundername: Team Project of the Education Ministry of the Guangdong Province
  grantid: 2017KCXTD011
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-db9f601b8cb4e5055a8ee91bfab3f4c0033efad646c4777599cc8739d9dd8a2f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001188290200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 08:33:32 EDT 2025
Sat Nov 29 04:10:58 EST 2025
Wed Aug 27 02:17:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-db9f601b8cb4e5055a8ee91bfab3f4c0033efad646c4777599cc8739d9dd8a2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0633-7224
0000-0002-3640-3229
0009-0008-3825-0503
PQID 2969052277
PQPubID 85478
PageCount 13
ParticipantIDs crossref_primary_10_1109_TSP_2024_3365944
proquest_journals_2969052277
ieee_primary_10436436
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Kungurtsev (ref18) 2019
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref9
  doi: 10.1016/j.patrec.2014.11.017
– ident: ref25
  doi: 10.1016/j.neucom.2005.06.021
– ident: ref20
  doi: 10.1109/tcsi.2004.834493
– ident: ref26
  doi: 10.3390/electronics10091079
– ident: ref7
  doi: 10.3390/e23080931
– ident: ref6
  doi: 10.1016/j.cosrev.2021.100378
– ident: ref1
  doi: 10.1109/tpami.2004.1261097
– ident: ref30
  doi: 10.1016/j.eswa.2020.114350
– ident: ref17
  doi: 10.1109/tsp.2008.2008254
– ident: ref8
  doi: 10.1016/j.compeleceng.2022.107684
– ident: ref21
  doi: 10.1023/a:1026065325419
– ident: ref11
  doi: 10.1109/tnn.2006.873281
– ident: ref10
  doi: 10.1145/1015330.1015408
– ident: ref13
  doi: 10.1155/2018/9385947
– ident: ref24
  doi: 10.3390/data4010014
– ident: ref2
  doi: 10.1016/j.patrec.2004.01.011
– ident: ref3
  doi: 10.1007/s521-001-8051-z
– ident: ref27
  doi: 10.1109/tim.2023.3265114
– ident: ref19
  doi: 10.1109/tsp.2020.3001906
– ident: ref12
  doi: 10.1109/embc.2013.6611107
– ident: ref4
  doi: 10.3390/e21040376
– ident: ref23
  doi: 10.1007/s10107-012-0584-1
– ident: ref16
  doi: 10.1145/1553374.1553501
– ident: ref28
  doi: 10.1109/tnnls.2022.3159573
– ident: ref29
  doi: 10.1080/00949655.2017.1327588
– ident: ref15
  doi: 10.1561/2200000058
– ident: ref5
  doi: 10.1016/j.procs.2019.01.008
– ident: ref14
  doi: 10.1561/2200000016
– year: 2019
  ident: ref18
  article-title: Distributed stochastic nonsmooth nonconvex optimization
– ident: ref22
  doi: 10.23919/eusipco47968.2020.9287358
– ident: ref31
  doi: 10.1007/s00357-019-09349-x
SSID ssj0014496
Score 2.4437392
Snippet It is worth noting that the traditional methods for performing both the dimensional reduction and the classification are via the two steps iterative...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1348
SubjectTerms Algorithms
Arithmetic
Classification
Classification algorithms
Clusters
EEG
Exact solutions
Joint PCA and supervised k means algorithm
Mathematical analysis
Matrices (mathematics)
mental arithmetic classification
non-iterative analytic optimization
Optimization
Principal component analysis
Principal components analysis
Reduction
Signal processing algorithms
singular value decomposition
Symmetric matrices
symmetric matrix
Transforms
Title Joint Principal Component Analysis and Supervised k Means Algorithm via Non-Iterative Analytic Optimization Approach
URI https://ieeexplore.ieee.org/document/10436436
https://www.proquest.com/docview/2969052277
Volume 72
WOSCitedRecordID wos001188290200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyIKBXlgYUhpEye2xwqBAIlSqUXqFjl-QARNqjbt7-fsJKgIMbBlsB3rLvfOfYfQFdPUuNJgAsbBI9L0PWFBPw3jFrBKES6kGzZBh0M2nfJR1azuemG01u7nM921j66Wr3K5sqkykHASgAWNGqhBKS2btb5LBoS4YVzgLwReyOi0rkn2-M1kPIJI0CfdIIhCTsgPG-SGqvzSxM683O__82IHaK_yI_GgZPwh2tLZEdrdQBc8RsVTnmYFHpXpdFhsZT_P4CRcQ5FgkSk8Xs2twlhqhT_wswbbhQefb_kiLd5neJ0KPMwz79GhL4NqLPfCW_ELaJtZ1caJBxU2eQu93t9Nbh-8asiCJ30SFp5KuIGgLGEyIRrcoVAwrXk_MSIJDJF21ps2QkUkkgSIHnIuJaMBV1wpJnwTnKBmBnc_RRgYIEIR-jQ0AQHHhGlBOFMRlZGKtPLb6LomezwvsTRiF4P0eAwsii2L4opFbdSyZN5YV1K4jTo1o-JK2paxzyHGB0eS0rM_tp2jHXt6mTvpoGaxWOkLtC3XRbpcXLoP6QtZyMf_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61FKlwaIGC2JaCD1w4hLLJOLaPq6oIWlhWYpH2Fjl-0FUhQbtZfj9jJ4tAVQ-95WDH1kzmnfkG4FA64WNpsCTjkKDx_UQH0E8vVQCssqi0icMmxHAoJxM16prVYy-Mcy7-fOaOw2Os5dvaLEKqjCQcM7Kg-Vt4xxHTftuu9Vw0QIzjuMhjyBIuxWRZlTxR38bXI4oFUzzOspwrxFdWKI5V-UsXRwNz-vE_r7YBHzpPkg1a1m_CG1dtwfoLfMFP0Pysp1XDRm1CnRYH6a8rehNbgpEwXVl2vXgIKmPuLPvDLh1ZLza4u61n0-b3PXucajasq-Q84i-Tcmz30qnsivTNfdfIyQYdOvk23Jz-GH8_S7oxC4lJkTeJLZWnsKyUpkRHDhHX0jnVL70uM48mTHtzXtscc4NCCK6UMVJkyiprpU59tgMrFd19FxgxQHPNU8F9huSaSKdRSZsLk9vc2bQHR0uyFw8tmkYRo5ATVRCLisCiomNRD7YDmV-sayncg70lo4pO3uZFqijKJ1dSiM__2HYA78_GlxfFxfnw1xdYCye1mZQ9WGlmC_cVVs1jM53P9uNH9QTo98tG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Principal+Component+Analysis+and+Supervised+k+Means+Algorithm+via+Non-Iterative+Analytic+Optimization+Approach&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Zhang%2C+Zhanbin&rft.au=Ling%2C+Bingo+Wing-Kuen&rft.au=Huang%2C+Guoheng&rft.date=2024&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=72&rft.spage=1348&rft.epage=1360&rft_id=info:doi/10.1109%2FTSP.2024.3365944&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2024_3365944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon