Quaternion Vector Quantized Variational Autoencoder

Vector quantized variational autoencoders, as variants of variational autoencoders, effectively capture discrete representations by quantizing continuous latent spaces and are widely used in generative tasks. However, these models still face limitations in handling complex image reconstruction, part...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 32; s. 151 - 155
Hlavní autoři: Luo, Hui, Liu, Xin, Sun, Jian, Zhang, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Vector quantized variational autoencoders, as variants of variational autoencoders, effectively capture discrete representations by quantizing continuous latent spaces and are widely used in generative tasks. However, these models still face limitations in handling complex image reconstruction, particularly in preserving high-quality details. Moreover, quaternion neural networks have shown unique advantages in handling multi-dimensional data, indicating that integrating quaternion approaches could potentially improve the performance of these autoencoders. To this end, we propose QVQ-VAE, a lightweight network in the quaternion domain that introduces a quaternion-based quantization layer and training strategy to improve reconstruction precision. By fully leveraging quaternion operations, QVQ-VAE reduces the number of model parameters, thereby lowering computational resource demands. Extensive evaluations on face and general object reconstruction tasks show that QVQ-VAE consistently outperforms existing methods while using significantly fewer parameters.
AbstractList Vector quantized variational autoencoders, as variants of variational autoencoders, effectively capture discrete representations by quantizing continuous latent spaces and are widely used in generative tasks. However, these models still face limitations in handling complex image reconstruction, particularly in preserving high-quality details. Moreover, quaternion neural networks have shown unique advantages in handling multi-dimensional data, indicating that integrating quaternion approaches could potentially improve the performance of these autoencoders. To this end, we propose QVQ-VAE, a lightweight network in the quaternion domain that introduces a quaternion-based quantization layer and training strategy to improve reconstruction precision. By fully leveraging quaternion operations, QVQ-VAE reduces the number of model parameters, thereby lowering computational resource demands. Extensive evaluations on face and general object reconstruction tasks show that QVQ-VAE consistently outperforms existing methods while using significantly fewer parameters.
Author Zhang, Yang
Luo, Hui
Liu, Xin
Sun, Jian
Author_xml – sequence: 1
  givenname: Hui
  orcidid: 0009-0005-6189-5260
  surname: Luo
  fullname: Luo, Hui
  email: mogu_hl@163.com
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
– sequence: 2
  givenname: Xin
  orcidid: 0000-0001-9646-4448
  surname: Liu
  fullname: Liu, Xin
  email: xiliu@must.edu.mo
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
– sequence: 3
  givenname: Jian
  orcidid: 0009-0006-6485-0751
  surname: Sun
  fullname: Sun, Jian
  email: jiansun97@163.com
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
– sequence: 4
  givenname: Yang
  orcidid: 0000-0002-0540-0893
  surname: Zhang
  fullname: Zhang, Yang
  email: yang.zhang@umanitoba.ca
  organization: Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
BookMark eNpNkDtPwzAQgC1UJNrCzsAQiTnhHNuxPVYVLykSIKCr5SQXKVWJi-0M8Otx1Q5Md7r77qFvQWajG5GQawoFpaDv6vfXooSSF0wAZ5KfkTkVQuUlq-gs5SAh1xrUBVmEsAUARZWYE_Y22Yh-HNyYbbCNzmepMsbhF7tsY_1gY2rZXbaaosOxdR36S3Le213Aq1Ncks-H-4_1U16_PD6vV3XellzEvNNMSkUBhaZS9qqptG2E7vrW6nS_qSQwzhveqxJpqRjlrGlsJ3rdWYm0Yktye9y79-57whDN1k0-PRNMgiuhlKQqUXCkWu9C8NibvR--rP8xFMxBjUlqzEGNOalJIzfHkQER_-GyYlxw9gfRt2BJ
CODEN ISPLEM
Cites_doi 10.1109/CVPR.2009.5206848
10.1109/TPAMI.2023.3261988
10.1109/MSP.2023.3278071
10.1145/3626235
10.1109/ICASSP.2019.8682495
10.1007/978-3-030-56694-4
10.1007/978-3-030-68787-8_12
10.1016/j.sigpro.2010.06.024
10.1016/j.asoc.2024.112154
10.21437/Interspeech.2018-1898
10.3390/info12030117
10.1109/IJCNN.2018.8489651
10.1109/TPAMI.2024.3356232
10.1109/TCSS.2023.3305616
10.1109/CVPR.2019.00453
10.1109/TCSVT.2023.3283289
10.1109/CVPR.2016.308
10.1007/s00006-024-01350-x
10.1109/CVPRW63382.2024.00750
10.1109/LSP.2021.3135803
10.1137/0330046
10.1007/s11831-023-09925-w
10.1109/ICPR56361.2022.9956102
10.1016/S0893-6080(96)00048-2
10.1007/s11263-010-0388-9
10.1109/ICCV.2015.425
10.1109/ICASSP39728.2021.9413859
10.1109/TNN.2011.2157358
10.1145/3592450
10.1007/978-3-030-01237-3_39
10.1007/978-3-030-91390-8_4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2024.3504374
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 155
ExternalDocumentID 10_1109_LSP_2024_3504374
10763454
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada; NSERC
  grantid: RGPIN 2020-06746
  funderid: 10.13039/501100000038
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 12371023; 12271338
  funderid: 10.13039/501100001809
– fundername: Wuyi University, Hong Kong and Macao
  grantid: 2019WGALH20
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-d9377810e59177f8b69ab59dfca9000b670344b4f82e1283143bbad5f9da7e163
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380677100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Mon Jun 30 10:13:35 EDT 2025
Sat Nov 29 03:38:57 EST 2025
Wed Aug 27 01:57:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-d9377810e59177f8b69ab59dfca9000b670344b4f82e1283143bbad5f9da7e163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-6189-5260
0009-0006-6485-0751
0000-0001-9646-4448
0000-0002-0540-0893
PQID 3146588718
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_3146588718
crossref_primary_10_1109_LSP_2024_3504374
ieee_primary_10763454
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
ref18
Oord (ref4) 2017; 30
Krizhevsky (ref34) 2009
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
Parcollet (ref13) 2018
ref3
ref6
ref5
Kingma (ref1) 2013
References_xml – ident: ref35
  doi: 10.1109/CVPR.2009.5206848
– ident: ref3
  doi: 10.1109/TPAMI.2023.3261988
– ident: ref9
  doi: 10.1109/MSP.2023.3278071
– ident: ref2
  doi: 10.1145/3626235
– ident: ref26
  doi: 10.1109/ICASSP.2019.8682495
– ident: ref24
  doi: 10.1007/978-3-030-56694-4
– year: 2018
  ident: ref13
  article-title: Quaternion recurrent neural networks
– ident: ref16
  doi: 10.1007/978-3-030-68787-8_12
– ident: ref25
  doi: 10.1016/j.sigpro.2010.06.024
– ident: ref19
  doi: 10.1016/j.asoc.2024.112154
– ident: ref11
  doi: 10.21437/Interspeech.2018-1898
– ident: ref14
  doi: 10.3390/info12030117
– ident: ref28
  doi: 10.1109/IJCNN.2018.8489651
– ident: ref6
  doi: 10.1109/TPAMI.2024.3356232
– ident: ref20
  doi: 10.1109/TCSS.2023.3305616
– year: 2009
  ident: ref34
  article-title: Learning multiple layers of features from tiny images
– ident: ref33
  doi: 10.1109/CVPR.2019.00453
– ident: ref17
  doi: 10.1109/TCSVT.2023.3283289
– ident: ref31
  doi: 10.1109/CVPR.2016.308
– ident: ref21
  doi: 10.1007/s00006-024-01350-x
– ident: ref8
  doi: 10.1109/CVPRW63382.2024.00750
– ident: ref18
  doi: 10.1109/LSP.2021.3135803
– ident: ref30
  doi: 10.1137/0330046
– ident: ref27
  doi: 10.1007/s11831-023-09925-w
– ident: ref7
  doi: 10.1109/ICPR56361.2022.9956102
– ident: ref10
  doi: 10.1016/S0893-6080(96)00048-2
– ident: ref22
  doi: 10.1007/s11263-010-0388-9
– ident: ref32
  doi: 10.1109/ICCV.2015.425
– ident: ref23
  doi: 10.1109/ICASSP39728.2021.9413859
– ident: ref29
  doi: 10.1109/TNN.2011.2157358
– year: 2013
  ident: ref1
  article-title: Auto-encoding variational Bayes
– volume: 30
  start-page: 6306
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref4
  article-title: Neural discrete representation learning
– ident: ref5
  doi: 10.1145/3592450
– ident: ref12
  doi: 10.1007/978-3-030-01237-3_39
– ident: ref15
  doi: 10.1007/978-3-030-91390-8_4
SSID ssj0008185
Score 2.438671
Snippet Vector quantized variational autoencoders, as variants of variational autoencoders, effectively capture discrete representations by quantizing continuous...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 151
SubjectTerms Convolution
Decoding
Face recognition
Image quality
Image reconstruction
Indexes
Multidimensional data
Neural networks
Parameters
Quantization (signal)
quaternion generative models
quaternion neural networks
Quaternions
Task complexity
Training
vector quantized variational autoencoder
Vectors
Title Quaternion Vector Quantized Variational Autoencoder
URI https://ieeexplore.ieee.org/document/10763454
https://www.proquest.com/docview/3146588718
Volume 32
WOSCitedRecordID wos001380677100038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RigEGPosoFJSBhcElH04cjxWiYkBVEVB1s-zYlrqkqE0Y-PWcnRQVIQa2KEok69l3997ZvgO4YXGYcWUkkVGUERppTRSGNcIUT22RWKO09s0m2GSSz-d82l5W93dhjDH-8JkZuke_l6-XRe1SZWjhaA00pR3oMMaay1rfbtdFnuaAYUjQxeabPcmQ3z29TFEJxnSYuHpdjP6IQb6pyi9P7MPL-PCfAzuCg5ZHBqNm4o9hx5QnsL9VXfAUkudaunQfIh_MfHI-wDdltfg0OpihRm7zgMGorpaunqU2qx68jR9e7x9J2yOBFDFNK6KRXrA8Ck2KuovZXGVcqpRrW0jXDlRlzNX0U9TmscFQlCA9Ukrq1HItmUEydgbdclmacwhQCCF9Q6tUOqNcRioprMWJ49ooFUveh9sNauK9KYUhvIQIuUCEhUNYtAj3oedQ2vquAagPgw3OojWWtcBBIQ9C5ZZf_PHbJezFru-uT30MoFutanMFu8VHtVivrv06-ALz7LAe
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGnkUUCmRgYUjJw3l4rBBVEaUqolTdLDu2pS4pahMGfj1nJ0VFiIEtihLJ-uy7-76zfQdwkwReTIXiLvf92CW-lK7AsOYmgkY6C7USUtpmE8lwmE6ndFRfVrd3YZRS9vCZ6phHu5cv51lpUmVo4WgNJCKbsBUREvjVda1vx2tiT3XE0HPRyaarXUmP3g1eR6gFA9IJTcWuhPyIQratyi9fbANM7-CfQzuE_ZpJOt1q6o9gQ-XHsLdWX_AEwpeSm4QfYu9MbHrewTd5MftU0pmgSq4zgU63LOamoqVUiya89R7G93237pLgZgGJClciwUhS31MRKq9EpyKmXERU6oybhqAiTkxVP0F0GigMRiESJCG4jDSVPFFIx06hkc9zdQYOSiEkcGiXQsaEcl-EmdY4dVQqIQJOW3C7Qo29V8UwmBURHmWIMDMIsxrhFjQNSmvfVQC1oL3CmdXmsmQ4KGRCqN3S8z9-u4ad_vh5wAaPw6cL2A1MF16bCGlDo1iU6hK2s49itlxc2TXxBU6gs2U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quaternion+Vector+Quantized+Variational+Autoencoder&rft.jtitle=IEEE+signal+processing+letters&rft.au=Luo%2C+Hui&rft.au=Liu%2C+Xin&rft.au=Sun%2C+Jian&rft.au=Zhang%2C+Yang&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=32&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1109%2FLSP.2024.3504374&rft.externalDocID=10763454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon