APGVAE: Adaptive disentangled representation learning with the graph-based structure information
Saved in:
| Published in: | Information sciences Vol. 657; p. 119903 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.02.2024
|
| ISSN: | 0020-0255 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| ArticleNumber | 119903 |
|---|---|
| Author | Ke, Qiao Xu, Shuang Liang, Yunji Jing, Xinhui Woźniak, Marcin Zheng, Jiangbin |
| Author_xml | – sequence: 1 givenname: Qiao orcidid: 0000-0002-0672-4734 surname: Ke fullname: Ke, Qiao – sequence: 2 givenname: Xinhui surname: Jing fullname: Jing, Xinhui – sequence: 3 givenname: Marcin surname: Woźniak fullname: Woźniak, Marcin – sequence: 4 givenname: Shuang surname: Xu fullname: Xu, Shuang – sequence: 5 givenname: Yunji surname: Liang fullname: Liang, Yunji – sequence: 6 givenname: Jiangbin surname: Zheng fullname: Zheng, Jiangbin |
| BookMark | eNp9kMlOwzAURb0oEi3wAez8AwnPjp2BXVSVglQJFsDWeErrKnUi2wXx93RgxYLV05Xeubo6MzTxg7cI3RLICZDybps7H3MKtMgJaRooJmgKQCEDyvklmsW4BQBWleUUfbQvy_d2cY9bI8fkPi02LlqfpF_31uBgx2BPObnB497K4J1f4y-XNjhtLF4HOW4yJePhOaaw12kfLHa-G8LuxFyji0720d783iv09rB4nT9mq-fl07xdZZoynjJTQqcNlxI6JWmtOl4rpSwpqqLWDeWq0awuSU11aaQ2jClTK6Y0r0jDtCTFFarOvToMMQbbCe3Oq1OQrhcExFGO2IqDHHGUI85yDiT5Q47B7WT4_of5AZLxb94 |
| CitedBy_id | crossref_primary_10_1007_s10489_025_06462_w crossref_primary_10_1016_j_inffus_2024_102630 crossref_primary_10_1016_j_inffus_2025_103149 crossref_primary_10_1007_s10489_024_05951_8 crossref_primary_10_1016_j_asoc_2024_111392 crossref_primary_10_1016_j_asoc_2025_113056 crossref_primary_10_1016_j_compag_2025_110566 crossref_primary_10_1016_j_engappai_2024_109880 crossref_primary_10_1007_s40747_024_01666_y crossref_primary_10_1109_TII_2024_3495768 crossref_primary_10_1016_j_asoc_2024_112339 crossref_primary_10_1007_s40747_024_01649_z crossref_primary_10_1016_j_engappai_2024_108851 crossref_primary_10_1007_s40747_024_01570_5 crossref_primary_10_3390_app14093780 crossref_primary_10_1016_j_neucom_2024_128143 crossref_primary_10_1016_j_optlaseng_2024_108364 crossref_primary_10_1016_j_asoc_2025_112739 crossref_primary_10_1016_j_ress_2025_110885 crossref_primary_10_1016_j_asoc_2025_112716 crossref_primary_10_1016_j_knosys_2025_113150 crossref_primary_10_1016_j_inffus_2024_102727 crossref_primary_10_1038_s41598_024_80056_3 crossref_primary_10_1007_s10489_024_06011_x crossref_primary_10_1016_j_neucom_2024_128709 crossref_primary_10_1007_s40747_024_01463_7 crossref_primary_10_1007_s10489_025_06538_7 crossref_primary_10_3390_electronics13122351 crossref_primary_10_1016_j_asoc_2025_113018 crossref_primary_10_1016_j_asoc_2024_112069 crossref_primary_10_1016_j_neunet_2024_106429 crossref_primary_10_1016_j_patrec_2024_02_004 crossref_primary_10_1142_S0218213025500083 crossref_primary_10_1016_j_ins_2024_120752 |
| Cites_doi | 10.1080/02699930903485076 10.1145/3236386.3241340 10.1109/TNNLS.2021.3056238 10.1016/j.ins.2018.12.057 10.1109/TNNLS.2020.2984958 10.1109/5.726791 10.1561/2200000006 10.1007/s11263-019-01284-z 10.1109/JSTARS.2021.3079103 10.1111/j.2517-6161.1988.tb01721.x 10.1109/TPAMI.2013.50 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2023.119903 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| ExternalDocumentID | 10_1016_j_ins_2023_119903 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 77I 8P~ 9DU 9JN 9JO AAAKF AAAKG AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- ~HD |
| ID | FETCH-LOGICAL-c245t-d60fcd5aa0fba28bf58bbbe13738c925b9c486182c6dacd44bd8b4bc57194ca13 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001131647100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:31:03 EST 2025 Tue Nov 18 22:25:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c245t-d60fcd5aa0fba28bf58bbbe13738c925b9c486182c6dacd44bd8b4bc57194ca13 |
| ORCID | 0000-0002-0672-4734 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2023_119903 crossref_primary_10_1016_j_ins_2023_119903 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2024 |
| References | Xiao (10.1016/j.ins.2023.119903_br0350) Chen (10.1016/j.ins.2023.119903_br0190) 2016 Bengio (10.1016/j.ins.2023.119903_br0010) 2013; 35 Goodfellow (10.1016/j.ins.2023.119903_br0090) 2014 Kumar (10.1016/j.ins.2023.119903_br0160) 2018 Davidson (10.1016/j.ins.2023.119903_br0410) 2018 Lauritzen (10.1016/j.ins.2023.119903_br0060) 1988; 50 Xu (10.1016/j.ins.2023.119903_br0300) 2017 Kingma (10.1016/j.ins.2023.119903_br0070) 2014 Lipton (10.1016/j.ins.2023.119903_br0050) 2018; 16 Higgins (10.1016/j.ins.2023.119903_br0200) 2017 Desjardins (10.1016/j.ins.2023.119903_br0230) Kingma (10.1016/j.ins.2023.119903_br0260) 2014 Siddharth (10.1016/j.ins.2023.119903_br0400) 2017 Siddharth (10.1016/j.ins.2023.119903_br0270) 2017 Bengio (10.1016/j.ins.2023.119903_br0130) 2009; 2 Royer (10.1016/j.ins.2023.119903_br0380) 2020 Yan (10.1016/j.ins.2023.119903_br0150) 2016; vol. 9908 Lee (10.1016/j.ins.2023.119903_br0250) 2020; 128 Ruiz (10.1016/j.ins.2023.119903_br0280) Zhang (10.1016/j.ins.2023.119903_br0310) 2019 Liu (10.1016/j.ins.2023.119903_br0360) 2015 Feng (10.1016/j.ins.2023.119903_br0420) 2021 Salimans (10.1016/j.ins.2023.119903_br0100) 2016 Hinton (10.1016/j.ins.2023.119903_br0080) 2010; 9 Wu (10.1016/j.ins.2023.119903_br0170) 2022; 33 Li (10.1016/j.ins.2023.119903_br0180) 2019; 482 Hinz (10.1016/j.ins.2023.119903_br0020) 2018 Ilse (10.1016/j.ins.2023.119903_br0330) 2020; vol. 121 Makhzani (10.1016/j.ins.2023.119903_br0120) Chen (10.1016/j.ins.2023.119903_br0210) 2018 Oord (10.1016/j.ins.2023.119903_br0140) 2016 Kim (10.1016/j.ins.2023.119903_br0220) 2018 Donahue (10.1016/j.ins.2023.119903_br0240) 2018 Nie (10.1016/j.ins.2023.119903_br0320) 2021; 32 Borji (10.1016/j.ins.2023.119903_br0390) 2016 Wu (10.1016/j.ins.2023.119903_br0030) 2021; 14 Lecun (10.1016/j.ins.2023.119903_br0340) 1998; 86 De Meyer (10.1016/j.ins.2023.119903_br0040) 2011; 106 Langner (10.1016/j.ins.2023.119903_br0370) 2010; 24 Radford (10.1016/j.ins.2023.119903_br0110) 2016 Mathieu (10.1016/j.ins.2023.119903_br0290) 2016 |
| References_xml | – ident: 10.1016/j.ins.2023.119903_br0230 – start-page: 4797 year: 2016 ident: 10.1016/j.ins.2023.119903_br0140 article-title: Conditional image generation with PixelCNN decoders – start-page: 5986 year: 2019 ident: 10.1016/j.ins.2023.119903_br0310 article-title: Semi-supervised learning with generative adversarial networks for Arabic dialect identification – start-page: 2221 year: 2016 ident: 10.1016/j.ins.2023.119903_br0390 article-title: ilab-20m: a large-scale controlled object dataset to investigate deep learning – year: 2018 ident: 10.1016/j.ins.2023.119903_br0240 article-title: Semantically decomposing the latent spaces of generative adversarial networks – volume: vol. 9908 start-page: 776 year: 2016 ident: 10.1016/j.ins.2023.119903_br0150 article-title: Attribute2image: conditional image generation from visual attributes – year: 2014 ident: 10.1016/j.ins.2023.119903_br0070 article-title: Auto-encoding variational Bayes – start-page: 2180 year: 2016 ident: 10.1016/j.ins.2023.119903_br0190 article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets – year: 2017 ident: 10.1016/j.ins.2023.119903_br0200 article-title: beta-VAE: learning basic visual concepts with a constrained variational framework – volume: 24 start-page: 1377 issue: 8 year: 2010 ident: 10.1016/j.ins.2023.119903_br0370 article-title: Presentation and validation of the radboud faces database publication-title: Cogn. Emot. doi: 10.1080/02699930903485076 – volume: 106 start-page: 380 issue: 493 year: 2011 ident: 10.1016/j.ins.2023.119903_br0040 article-title: Probabilistic graphical models: principles and techniques publication-title: JASA, J. Am. Stat. Assoc. – start-page: 856 year: 2018 ident: 10.1016/j.ins.2023.119903_br0410 article-title: Hyperspherical variational auto-encoders – volume: 16 start-page: 31 issue: 3 year: 2018 ident: 10.1016/j.ins.2023.119903_br0050 article-title: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery publication-title: Queue doi: 10.1145/3236386.3241340 – volume: 33 start-page: 4257 issue: 9 year: 2022 ident: 10.1016/j.ins.2023.119903_br0170 article-title: Commonality autoencoder: learning common features for change detection from heterogeneous images publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3056238 – volume: vol. 121 start-page: 322 year: 2020 ident: 10.1016/j.ins.2023.119903_br0330 article-title: Diva: domain invariant variational autoencoders – volume: 482 start-page: 73 year: 2019 ident: 10.1016/j.ins.2023.119903_br0180 article-title: Disentangled variational auto-encoder for semi-supervised learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.12.057 – volume: 32 start-page: 1547 issue: 4 year: 2021 ident: 10.1016/j.ins.2023.119903_br0320 article-title: Unsupervised and semisupervised projection with graph optimization publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2984958 – ident: 10.1016/j.ins.2023.119903_br0350 – year: 2020 ident: 10.1016/j.ins.2023.119903_br0380 article-title: XGAN: unsupervised image-to-image translation for many-to-many mappings – ident: 10.1016/j.ins.2023.119903_br0280 – start-page: 5927 year: 2017 ident: 10.1016/j.ins.2023.119903_br0400 article-title: Learning disentangled representations with semi-supervised deep generative models – year: 2018 ident: 10.1016/j.ins.2023.119903_br0160 article-title: Variational inference of disentangled latent concepts from unlabeled observations – start-page: 3581 year: 2014 ident: 10.1016/j.ins.2023.119903_br0260 article-title: Semi-supervised learning with deep generative models – start-page: 5927 year: 2017 ident: 10.1016/j.ins.2023.119903_br0270 article-title: Learning disentangled representations with semi-supervised deep generative models – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.ins.2023.119903_br0340 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.ins.2023.119903_br0130 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – start-page: 2649 year: 2018 ident: 10.1016/j.ins.2023.119903_br0220 article-title: Disentangling by factorizing – ident: 10.1016/j.ins.2023.119903_br0120 – volume: 128 start-page: 2402 issue: 10 year: 2020 ident: 10.1016/j.ins.2023.119903_br0250 article-title: DRIT++: diverse image-to-image translation via disentangled representations publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01284-z – year: 2016 ident: 10.1016/j.ins.2023.119903_br0110 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – start-page: 1 year: 2018 ident: 10.1016/j.ins.2023.119903_br0020 article-title: Image generation and translation with disentangled representations – start-page: 2234 year: 2016 ident: 10.1016/j.ins.2023.119903_br0100 article-title: Improved techniques for training GANs – volume: 14 start-page: 5194 year: 2021 ident: 10.1016/j.ins.2023.119903_br0030 article-title: A two-step method for remote sensing images registration based on local and global constraints publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3079103 – year: 2016 ident: 10.1016/j.ins.2023.119903_br0290 article-title: Deep multi-scale video prediction beyond mean square error – start-page: 3730 year: 2015 ident: 10.1016/j.ins.2023.119903_br0360 article-title: Deep learning face attributes in the wild – start-page: 2672 year: 2014 ident: 10.1016/j.ins.2023.119903_br0090 article-title: Generative adversarial nets – start-page: 2615 year: 2018 ident: 10.1016/j.ins.2023.119903_br0210 article-title: Isolating sources of disentanglement in VAEs – volume: 9 start-page: 926 issue: 1 year: 2010 ident: 10.1016/j.ins.2023.119903_br0080 article-title: A practical guide to training restricted Boltzmann machines publication-title: Momentum – volume: 50 issue: 2 year: 1988 ident: 10.1016/j.ins.2023.119903_br0060 article-title: Local computations with probabilities on graphical structures and their application to expert systems publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1988.tb01721.x – start-page: 7413 year: 2021 ident: 10.1016/j.ins.2023.119903_br0420 article-title: SHOT-VAE: semi-supervised deep generative models with label-aware ELBO approximations – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.ins.2023.119903_br0010 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – start-page: 3358 year: 2017 ident: 10.1016/j.ins.2023.119903_br0300 article-title: Variational autoencoder for semi-supervised text classification |
| SSID | ssj0004766 |
| Score | 2.5847206 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 119903 |
| Title | APGVAE: Adaptive disentangled representation learning with the graph-based structure information |
| Volume | 657 |
| WOSCitedRecordID | wos001131647100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004766 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgM9ICggWlrkA-VAFZSHkzi9hWp5HaoiFZRb8Cs025V3Vbqr_nzGie2kFZXogUsUWY4VZb7M2PP4BqE3ccRDFREVKJmygEQmCSBORMDAHklO0ziTsms2kZ-c0KoqTieTtauFWc9zren1dbH8r6KGMRC2KZ29h7j9ojAA9yB0uILY4fpPgi9PP_0op53DT7JllxlkojAadoG_5soUqyyHkiPt2kY4jyygpuOwDox5k4c9vawJMliGVS_HmUuB98OH1poO4aHOWfqtZQufp2M7qFStPl-13iAsDo7Tgw-lbtmFrR8SrQdtteo8tOcrZo2s9VHExKU1D3oXDqnm9DLWu1nPTG01ZxSBXUz-qtR7_8IMTiKGXz1O3g9zbxJo3zJsPt3QZbLNaliiNkvU_RIP0GacpwVow83yy7T6OlTU5n2U2723i4d3mYG33mO0oxltTc6eoMf2TIHLHgtP0UTpbbQ1YprcRvu2PgW_xSOJYavZn6GfPWqOsMMMHmMG38QMdpjBBjMYMINHmMEeM3iEmefo-8fp2fHnwDbfCERM0qtAZmEj4P9lYcNZTHmTUs65igwTlijilBeC0AxOpyKTTEhCuKSccJHmUUEEi5IXaEMvtHqJcCNNNDiRNCEhafKchk2mjGlJuBRUsh0Uug9YC8tMbxqkzOs7BbeD3vlHlj0ty92Td-8z-RV6NCB4D23AJ1P76KFYX7W_L19bnPwBaZ2H9A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APGVAE%3A+Adaptive+disentangled+representation+learning+with+the+graph-based+structure+information&rft.jtitle=Information+sciences&rft.au=Ke%2C+Qiao&rft.au=Jing%2C+Xinhui&rft.au=Wo%C5%BAniak%2C+Marcin&rft.au=Xu%2C+Shuang&rft.date=2024-02-01&rft.issn=0020-0255&rft.volume=657&rft.spage=119903&rft_id=info:doi/10.1016%2Fj.ins.2023.119903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2023_119903 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |