Distributed Center-Based Clustering: A Unified Framework
We develop a family of distributed center-based clustering algorithms that work over connected networks of users. In the proposed scenario, users contain a local dataset and communicate only with their immediate neighbours, with the aim of finding a clustering of the full, joint data. The proposed f...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on signal processing Jg. 73; S. 903 - 918 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We develop a family of distributed center-based clustering algorithms that work over connected networks of users. In the proposed scenario, users contain a local dataset and communicate only with their immediate neighbours, with the aim of finding a clustering of the full, joint data. The proposed family, termed Distributed Gradient Clustering (DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula>), is parametrized by <inline-formula><tex-math notation="LaTeX">\rho\geq 1</tex-math></inline-formula>, controlling the proximity of users' center estimates, with <inline-formula><tex-math notation="LaTeX">\mathcal{F}</tex-math></inline-formula> determining the clustering loss. Our framework allows for a broad class of smooth convex loss functions, including popular clustering losses like <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula>-means and Huber loss. Specialized to <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula>-means and Huber loss, DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula> gives rise to novel distributed clustering algorithms DGC-KM<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula> and DGC-HL<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula>, while novel clustering losses based on the logistic and fair loss lead to DGC-LL<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula> and DGC-FL<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula>. We provide a unified analysis and establish several strong results, under mild assumptions. First, the sequence of centers generated by the methods converges to a well-defined notion of fixed point, under any center initialization and value of <inline-formula><tex-math notation="LaTeX">\rho</tex-math></inline-formula>. Second, as <inline-formula><tex-math notation="LaTeX">\rho</tex-math></inline-formula> increases, the family of fixed points produced by DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula> converges to a notion of consensus fixed points. We show that consensus fixed points of DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula> are equivalent to fixed points of gradient clustering over the full data, guaranteeing a clustering of the full data is produced. For the special case of Bregman losses, we show that our fixed points converge to the set of Lloyd points. Numerical experiments on real data confirm our theoretical findings and demonstrate strong performance of the methods. |
|---|---|
| AbstractList | We develop a family of distributed center-based clustering algorithms that work over connected networks of users. In the proposed scenario, users contain a local dataset and communicate only with their immediate neighbours, with the aim of finding a clustering of the full, joint data. The proposed family, termed Distributed Gradient Clustering (DGC-[Formula Omitted]), is parametrized by [Formula Omitted], controlling the proximity of users’ center estimates, with [Formula Omitted] determining the clustering loss. Our framework allows for a broad class of smooth convex loss functions, including popular clustering losses like [Formula Omitted]-means and Huber loss. Specialized to [Formula Omitted]-means and Huber loss, DGC-[Formula Omitted] gives rise to novel distributed clustering algorithms DGC-KM[Formula Omitted] and DGC-HL[Formula Omitted], while novel clustering losses based on the logistic and fair loss lead to DGC-LL[Formula Omitted] and DGC-FL[Formula Omitted]. We provide a unified analysis and establish several strong results, under mild assumptions. First, the sequence of centers generated by the methods converges to a well-defined notion of fixed point, under any center initialization and value of [Formula Omitted]. Second, as [Formula Omitted] increases, the family of fixed points produced by DGC-[Formula Omitted] converges to a notion of consensus fixed points. We show that consensus fixed points of DGC-[Formula Omitted] are equivalent to fixed points of gradient clustering over the full data, guaranteeing a clustering of the full data is produced. For the special case of Bregman losses, we show that our fixed points converge to the set of Lloyd points. Numerical experiments on real data confirm our theoretical findings and demonstrate strong performance of the methods. We develop a family of distributed center-based clustering algorithms that work over connected networks of users. In the proposed scenario, users contain a local dataset and communicate only with their immediate neighbours, with the aim of finding a clustering of the full, joint data. The proposed family, termed Distributed Gradient Clustering (DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula>), is parametrized by <inline-formula><tex-math notation="LaTeX">\rho\geq 1</tex-math></inline-formula>, controlling the proximity of users' center estimates, with <inline-formula><tex-math notation="LaTeX">\mathcal{F}</tex-math></inline-formula> determining the clustering loss. Our framework allows for a broad class of smooth convex loss functions, including popular clustering losses like <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula>-means and Huber loss. Specialized to <inline-formula><tex-math notation="LaTeX">K</tex-math></inline-formula>-means and Huber loss, DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula> gives rise to novel distributed clustering algorithms DGC-KM<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula> and DGC-HL<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula>, while novel clustering losses based on the logistic and fair loss lead to DGC-LL<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula> and DGC-FL<inline-formula><tex-math notation="LaTeX">{}_{\rho}</tex-math></inline-formula>. We provide a unified analysis and establish several strong results, under mild assumptions. First, the sequence of centers generated by the methods converges to a well-defined notion of fixed point, under any center initialization and value of <inline-formula><tex-math notation="LaTeX">\rho</tex-math></inline-formula>. Second, as <inline-formula><tex-math notation="LaTeX">\rho</tex-math></inline-formula> increases, the family of fixed points produced by DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula> converges to a notion of consensus fixed points. We show that consensus fixed points of DGC-<inline-formula><tex-math notation="LaTeX">\mathcal{F}_{\rho}</tex-math></inline-formula> are equivalent to fixed points of gradient clustering over the full data, guaranteeing a clustering of the full data is produced. For the special case of Bregman losses, we show that our fixed points converge to the set of Lloyd points. Numerical experiments on real data confirm our theoretical findings and demonstrate strong performance of the methods. |
| Author | Kar, Soummya Bajovic, Dragana Jakovetic, Dusan Armacki, Aleksandar |
| Author_xml | – sequence: 1 givenname: Aleksandar orcidid: 0000-0001-7916-585X surname: Armacki fullname: Armacki, Aleksandar email: aarmacki@andrew.cmu.edu organization: Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 2 givenname: Dragana orcidid: 0000-0003-1783-8734 surname: Bajovic fullname: Bajovic, Dragana email: dbajovic@uns.ac.rs organization: Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia – sequence: 3 givenname: Dusan orcidid: 0000-0003-3497-5589 surname: Jakovetic fullname: Jakovetic, Dusan email: dusan.jakovetic@dmi.uns.ac.rs organization: Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia – sequence: 4 givenname: Soummya orcidid: 0000-0002-8060-5581 surname: Kar fullname: Kar, Soummya email: soummyak@andrew.cmu.edu organization: Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA |
| BookMark | eNpNkM1LAzEQxYNUsK3ePXgoeN6aTL423mq1KhQUbMFbyO7OSmq7W5NdxP_elHrwNPMe783Ab0QGTdsgIZeMThmj5mb19joFCnLKJWdg4IQMmREso0KrQdqp5JnM9fsZGcW4oZQJYdSQ5Pc-dsEXfYfVZI5NhyG7c_Egtn1Myjcft5PZZN342id3EdwOv9vweU5Oa7eNePE3x2S9eFjNn7Lly-PzfLbMShCyyyooGHOqpoyzIldKAwqlS4HgEICWkDtluOGOKtSlcUXFk8MLTiuQAJyPyfXx7j60Xz3Gzm7aPjTppeVMGRDaUJVS9JgqQxtjwNrug9-58GMZtQc-NvGxBz72j0-qXB0rHhH_xXOhZQ78FzrwYQg |
| CODEN | ITPRED |
| Cites_doi | 10.1109/MSP.2012.2235193 10.1109/TAC.2021.3122586 10.23919/EUSIPCO58844.2023.10289938 10.1137/1.9781611972740.22 10.1109/TSP.2008.2007111 10.1016/0041-5553(67)90040-7 10.1109/TAC.2008.2009515 10.1109/TCYB.2016.2526683 10.1109/JPROC.2020.3024266 10.1214/aos/1176345339 10.1109/TIT.1982.1056489 10.1109/JSTSP.2011.2114324 10.1109/TAC.2014.2298712 10.1109/TSP.2012.2211593 10.1137/16M1084316 10.1016/j.patrec.2009.09.011 10.1007/BF02293907 10.1109/JPROC.2014.2306253 10.1137/14096668X 10.1145/3580305.3599283 10.1201/b19706-9 10.1137/20M1361158 10.1137/S1052623497331063 10.1109/RBME.2010.2083647 10.1109/MSP.2020.2975749 10.1145/1541880.1541882 10.1109/TAC.2018.2836919 10.1109/TNN.2005.845141 10.1109/TSP.2023.3343561 10.1109/5.726791 10.1109/JIOT.2020.2981774 10.1017/CBO9781139086547 10.1109/Allerton.2012.6483403 10.1109/FOCS.2010.35 10.1109/TIT.2012.2191450 10.5555/1953048.2078195 10.1109/TIT.2022.3192506 10.1109/TSIPN.2016.2524588 10.1109/TAC.2009.2031203 10.1109/CDC.2006.377308 10.1090/cbms/092 10.1109/TSP.2009.2036046 10.1007/s10462-020-09918-2 10.1109/SPAWC.2005.1506308 10.1007/978-3-642-79999-0_1 10.1109/TPAMI.1984.4767478 10.1109/TSP.2023.3277211 10.1007/978-3-642-32512-0_4 10.1561/2200000083 10.1109/JPROC.2010.2052531 10.1111/j.1469-1809.1936.tb02137.x 10.1145/276698.276718 10.1007/978-3-319-91578-4 10.1109/ISC255366.2022.9921863 10.1109/TKDE.2008.222 10.1109/MSP.2023.3267896 10.1109/JPROC.2020.3007395 10.1016/j.cie.2020.107023 10.1145/1007352.1007400 10.1109/CDC.2018.8619228 10.1137/0213014 10.1137/130943170 10.1145/2783258.2783313 10.1214/aoms/1177703732 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2025.3531292 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 918 |
| ExternalDocumentID | 10_1109_TSP_2025_3531292 10847582 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science, Technological Development and Innovation grantid: No. 451-03-65/2024-03/200156 – fundername: Provincial Secretariat for Higher Education and Scientific Research grantid: 142-451-2593/2021-01/2 – fundername: National Science Foundation grantid: ECCS 2330195 funderid: 10.13039/100000001 – fundername: "Scientific and Artistic Research Work of Researchers in Teaching and Associate Positions at the Faculty of Technical Sciences, University of Novi Sad" grantid: No. 01-3394/1 – fundername: Science Fund of Republic of Serbia, project "LASCADO" grantid: 7359 – fundername: European Union's Horizon Europe program grantid: 101093006 – fundername: Serbian Ministry of Science, Technological development and Innovation, within the bilateral project Serbia-Slovakia grantid: No. 337-00-3/2024-05/16 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-d2b11a6f0131b86672e467c4e2ae220c28a69393a06e7c9abd38a63b30d252233 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001428033100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:13:43 EDT 2025 Sat Nov 29 08:20:59 EST 2025 Wed Aug 27 01:48:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-d2b11a6f0131b86672e467c4e2ae220c28a69393a06e7c9abd38a63b30d252233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3497-5589 0000-0003-1783-8734 0000-0001-7916-585X 0000-0002-8060-5581 |
| PQID | 3169247906 |
| PQPubID | 85478 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3169247906 crossref_primary_10_1109_TSP_2025_3531292 ieee_primary_10847582 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref14 ref53 ref52 ref11 ref55 ref10 ref54 Sun (ref75) 2021; 22 Armacki (ref19) 2022; 162 ref18 Swenson (ref58) 2022; 23 ref51 MacQueen (ref17) 1967; 1 ref50 ref46 ref45 ref48 ref47 ref86 ref85 ref88 Dennis (ref36) 2021; 139 ref43 ref87 Tang (ref81) 2017; 54 ref49 Bertsekas (ref60) 1982 ref8 Paul (ref67) 2021; 34 ref9 ref3 ref6 ref5 Dhillon (ref4) 2003; 3 ref82 ref40 ref84 ref83 Balcan (ref41) 2013; 26 ref80 ref35 ref79 Vattani (ref15) ref34 ref31 ref30 Oliva (ref42) 2013 ref74 ref77 ref32 ref76 ref2 ref1 ref39 Krizhevsky (ref72) 2009 ref71 ref70 Awasthi (ref16) 2015 ref73 Li (ref33) 2018; 31 ref24 ref68 Pediredla (ref7) 2011 ref23 Kar (ref44) 2019 Taylor (ref20) 2021 ref26 ref25 Qiao (ref37) 2023 ref69 ref64 ref63 ref66 Huang (ref38) 2023; 202 ref65 ref28 ref27 McMahan (ref21) 2017; 54 ref29 Yang (ref22) 2013; 26 ref62 Armacki (ref59) 2024 ref61 Ghosh (ref78) 2020; 33 |
| References_xml | – ident: ref29 doi: 10.1109/MSP.2012.2235193 – year: 2013 ident: ref42 article-title: Distributed k-means algorithm – ident: ref57 doi: 10.1109/TAC.2021.3122586 – ident: ref83 doi: 10.23919/EUSIPCO58844.2023.10289938 – ident: ref18 doi: 10.1137/1.9781611972740.22 – ident: ref82 doi: 10.1109/TSP.2008.2007111 – year: 2009 ident: ref72 article-title: Learning multiple layers of features from tiny images – ident: ref61 doi: 10.1016/0041-5553(67)90040-7 – ident: ref48 doi: 10.1109/TAC.2008.2009515 – volume: 202 start-page: 13845 volume-title: Proc. 40th Int. Conf. Mach. Learn. year: 2023 ident: ref38 article-title: Fast algorithms for distributed k-clustering with outliers – ident: ref43 doi: 10.1109/TCYB.2016.2526683 – ident: ref55 doi: 10.1109/JPROC.2020.3024266 – ident: ref77 doi: 10.1214/aos/1176345339 – volume: 26 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2013 ident: ref41 article-title: Distributed k-means and k-median clustering on general topologies – ident: ref11 doi: 10.1109/TIT.1982.1056489 – volume: 139 start-page: 2611 volume-title: Proc. 38th Int. Conf. Mach. Learn. year: 2021 ident: ref36 article-title: Heterogeneity for the win: One-shot federated clustering – ident: ref40 doi: 10.1109/JSTSP.2011.2114324 – ident: ref53 doi: 10.1109/TAC.2014.2298712 – ident: ref86 doi: 10.1109/TSP.2012.2211593 – ident: ref49 doi: 10.1137/16M1084316 – ident: ref2 doi: 10.1016/j.patrec.2009.09.011 – ident: ref88 doi: 10.1007/BF02293907 – volume: 26 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2013 ident: ref22 article-title: Trading computation for communication: Distributed stochastic dual coordinate ascent – volume: 34 start-page: 8307 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2021 ident: ref67 article-title: Uniform concentration bounds toward a unified framework for robust clustering – volume: 31 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2018 ident: ref33 article-title: Distributed k-clustering for data with heavy noise – volume: 23 start-page: 1 year: 2022 ident: ref58 article-title: Distributed stochastic gradient descent: Nonconvexity, nonsmoothness, and convergence to local minima publication-title: J. Mach. Learn. Res. – volume-title: Constrained Optimization and Lagrange Multiplier Methods year: 1982 ident: ref60 – ident: ref27 doi: 10.1109/JPROC.2014.2306253 – ident: ref50 doi: 10.1137/14096668X – ident: ref9 doi: 10.1145/3580305.3599283 – ident: ref12 doi: 10.1201/b19706-9 – ident: ref56 doi: 10.1137/20M1361158 – ident: ref80 doi: 10.1137/S1052623497331063 – ident: ref6 doi: 10.1109/RBME.2010.2083647 – year: 2019 ident: ref44 article-title: Clustering with distributed data – ident: ref24 doi: 10.1109/MSP.2020.2975749 – ident: ref5 doi: 10.1145/1541880.1541882 – ident: ref15 article-title: The hardness of k-means clustering in the plane – year: 2021 ident: ref20 article-title: Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025 (in zettabytes) – volume: 54 start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. year: 2017 ident: ref21 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref31 doi: 10.1109/TAC.2018.2836919 – ident: ref1 doi: 10.1109/TNN.2005.845141 – volume: 33 start-page: 19586 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref78 article-title: An efficient framework for clustered federated learning – ident: ref79 doi: 10.1109/TSP.2023.3343561 – ident: ref71 doi: 10.1109/5.726791 – ident: ref45 doi: 10.1109/JIOT.2020.2981774 – ident: ref65 doi: 10.1017/CBO9781139086547 – ident: ref30 doi: 10.1109/Allerton.2012.6483403 – ident: ref10 doi: 10.1109/FOCS.2010.35 – ident: ref26 doi: 10.1109/TIT.2012.2191450 – ident: ref73 doi: 10.5555/1953048.2078195 – ident: ref68 doi: 10.1109/TIT.2022.3192506 – ident: ref51 doi: 10.1109/TSIPN.2016.2524588 – year: 2024 ident: ref59 article-title: A unified framework for gradient-based clustering of distributed data – ident: ref84 doi: 10.1109/TAC.2009.2031203 – volume: 54 start-page: 1495 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. year: 2017 ident: ref81 article-title: Convergence rate of stochastic k-means – ident: ref87 doi: 10.1109/CDC.2006.377308 – ident: ref64 doi: 10.1090/cbms/092 – ident: ref85 doi: 10.1109/TSP.2009.2036046 – volume: 162 start-page: 929 volume-title: Proc. 39th Int. Conf. Mach. Learn. year: 2022 ident: ref19 article-title: Gradient based clustering – ident: ref35 doi: 10.1007/s10462-020-09918-2 – volume-title: Proc. 37th Conf. Neural Inf. Process. Syst. year: 2023 ident: ref37 article-title: Federated spectral clustering via secure similarity reconstruction – ident: ref63 doi: 10.1109/SPAWC.2005.1506308 – ident: ref3 doi: 10.1007/978-3-642-79999-0_1 – volume: 1 start-page: 281 volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probability year: 1967 ident: ref17 article-title: Some methods for classification and analysis of multivariate observations – ident: ref13 doi: 10.1109/TPAMI.1984.4767478 – ident: ref32 doi: 10.1109/TSP.2023.3277211 – start-page: 501 volume-title: Proc. 7th Int. Symp. Image Signal Process. Anal. (ISPA) year: 2011 ident: ref7 article-title: A Huber-loss-driven clustering technique and its application to robust cell detection in confocal microscopy images – ident: ref8 doi: 10.1007/978-3-642-32512-0_4 – ident: ref25 doi: 10.1561/2200000083 – ident: ref69 doi: 10.1109/JPROC.2010.2052531 – ident: ref70 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref46 doi: 10.1145/276698.276718 – ident: ref66 doi: 10.1007/978-3-319-91578-4 – ident: ref76 doi: 10.1109/ISC255366.2022.9921863 – volume: 3 start-page: 1265 year: 2003 ident: ref4 article-title: A divisive information-theoretic feature clustering algorithm for text classification publication-title: J. Mach. Learn. Res. (JMLR) – ident: ref39 doi: 10.1109/TKDE.2008.222 – year: 2015 ident: ref16 article-title: The hardness of approximation of euclidean k-means – ident: ref28 doi: 10.1109/MSP.2023.3267896 – ident: ref23 doi: 10.1109/JPROC.2020.3007395 – ident: ref34 doi: 10.1016/j.cie.2020.107023 – ident: ref47 doi: 10.1145/1007352.1007400 – ident: ref54 doi: 10.1109/CDC.2018.8619228 – ident: ref14 doi: 10.1137/0213014 – ident: ref52 doi: 10.1137/130943170 – ident: ref74 doi: 10.1145/2783258.2783313 – ident: ref62 doi: 10.1214/aoms/1177703732 – volume: 22 start-page: 1 year: 2021 ident: ref75 article-title: Convex clustering: Model, theoretical guarantee and efficient algorithm publication-title: J. Mach. Learn. Res. |
| SSID | ssj0014496 |
| Score | 2.473128 |
| Snippet | We develop a family of distributed center-based clustering algorithms that work over connected networks of users. In the proposed scenario, users contain a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 903 |
| SubjectTerms | Algorithms Clustering Clustering algorithms consensus Convergence Costs Distributed databases Europe first-order methods fixed points Logistics networks peer-to-peer Peer-to-peer computing Privacy Servers Signal processing algorithms |
| Title | Distributed Center-Based Clustering: A Unified Framework |
| URI | https://ieeexplore.ieee.org/document/10847582 https://www.proquest.com/docview/3169247906 |
| Volume | 73 |
| WOSCitedRecordID | wos001428033100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjKwMLg4tmPHbOVRMaCqEgV1ixw_JCTUoj74_ZydBBUhBrYkcqLos3333Z3vDqFLn-UGeKvAzHiLuQcOB6SaYi2YUM6k1sbegK9PcjjMJxM1qpPVYy6Mcy4ePnO9cBlj-XZmVsFVBjscZGmWg8TdlFJUyVrfIQPOYzMu4AsMZ7mcNDFJoq7HzyOwBGnWY7DiqKI_dFBsqvJLEkf1Mtj754_to92aRyb9auIP0IabHqKdteqCRyi_D0VxQz8rZ5PgxXVzfAtKC27eV6E-Aoy6SfoJ0E4PRDQZNOe02uhl8DC-e8R1owRsKM-W2NIyTbXwoXZOmQshqQP5Z7ij2lFKDM21UEwxTYSTRunSMnjCSkYsBf7F2DFqTWdTd4ISpwEhm1kvrONcl4oSz5UBGqSZl5500FUDXfFR1cMooh1BVAEwFwHmooa5g9oBqrVxFUod1G3ALuodsyhYKsAUlIqI0z9eO0Pb4euV_6OLWsv5yp2jLfO5fFvML-Ji-AKHIrBs |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QQAIOPIcYzx64cMhIkzRtuI3HNMSYJjHQblWah4SENrQHvx8n7dAQ4sCtrVK1-pLYn-3YRujCJZkG3iow085g7oDDAammWAkmpNWxMaE34Gs37fWy4VD2q2T1kAtjrQ2Hz2zTX4ZYvhnruXeVwQ4HWZpkIHFXE84pKdO1voMGnId2XMAYGE6ydLiIShJ5NXjugy1IkyaDNUcl_aGFQluVX7I4KJj29j9_bQdtVUwyapVTv4tW7GgPbS7VF9xH2Z0vi-s7WlkTeT-uneAbUFtw8z73FRJg1HXUioB4OqCiUXtxUquOXtr3g9sOrlolYE15MsOGFnGshPPVc4pMiJRakICaW6ospUTTTAnJJFNE2FRLVRgGT1jBiKHAwBg7QLXReGQPUWQVIGQS44SxnKtCUuK41ECEFHOpIw10uYAu_ygrYuTBkiAyB5hzD3NewdxAdQ_V0rgSpQY6WYCdV3tmmrNYgDGYSiKO_njtHK13Bk_dvPvQezxGG_5LpTfkBNVmk7k9RWv6c_Y2nZyFhfEF5e6zsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Center-Based+Clustering%3A+A+Unified+Framework&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Armacki%2C+Aleksandar&rft.au=Bajovi%C4%87%2C+Dragana&rft.au=Jakoveti%C4%87%2C+Du%C5%A1an&rft.au=Kar%2C+Soummya&rft.date=2025&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=73&rft.spage=903&rft.epage=918&rft_id=info:doi/10.1109%2FTSP.2025.3531292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2025_3531292 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |