Semi-Asynchronous Federated Split Learning for Computing-Limited Devices in Wireless Networks

The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid training paradigm, federated split learning (FSL) leverages data and model parallelism to enhance training efficiency. However, existing FSL enc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on wireless communications Ročník 24; číslo 6; s. 5196 - 5212
Hlavní autori: Ao, Huiqing, Tian, Hui, Ni, Wanli, Nie, Gaofeng, Niyato, Dusit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1536-1276, 1558-2248
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid training paradigm, federated split learning (FSL) leverages data and model parallelism to enhance training efficiency. However, existing FSL encounters unacceptable waiting latency due to device heterogeneity and synchronous model aggregation. To address this issue, we propose a semi-asynchronous FSL (SAFSL) framework that enables personalized model splitting and aperiodic model aggregation. We derive the convergence upper bound by considering factors such as the number of devices, training iterations, and data heterogeneity. To minimize the long-term average training latency while maintaining high energy efficiency in resource-constrained wireless networks, we formulate a stochastic mixed-integer nonlinear programming problem. By decomposing it into multiple sub-problems in each round, we propose a Lyapunov-based alternating optimization algorithm to solve it in an online manner. Numerical results demonstrate that our SAFSL achieves faster convergence with reduced communication overhead while maintaining high prediction performance under non-independent and identically distributed data, outperforming state-of-the-art benchmarks. Moreover, our algorithm achieves a low training latency, highlighting its superior performance and effectiveness.
AbstractList The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid training paradigm, federated split learning (FSL) leverages data and model parallelism to enhance training efficiency. However, existing FSL encounters unacceptable waiting latency due to device heterogeneity and synchronous model aggregation. To address this issue, we propose a semi-asynchronous FSL (SAFSL) framework that enables personalized model splitting and aperiodic model aggregation. We derive the convergence upper bound by considering factors such as the number of devices, training iterations, and data heterogeneity. To minimize the long-term average training latency while maintaining high energy efficiency in resource-constrained wireless networks, we formulate a stochastic mixed-integer nonlinear programming problem. By decomposing it into multiple sub-problems in each round, we propose a Lyapunov-based alternating optimization algorithm to solve it in an online manner. Numerical results demonstrate that our SAFSL achieves faster convergence with reduced communication overhead while maintaining high prediction performance under non-independent and identically distributed data, outperforming state-of-the-art benchmarks. Moreover, our algorithm achieves a low training latency, highlighting its superior performance and effectiveness.
Author Ni, Wanli
Nie, Gaofeng
Tian, Hui
Ao, Huiqing
Niyato, Dusit
Author_xml – sequence: 1
  givenname: Huiqing
  orcidid: 0009-0008-6299-4844
  surname: Ao
  fullname: Ao, Huiqing
  email: hqao@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Hui
  orcidid: 0000-0001-8876-1389
  surname: Tian
  fullname: Tian, Hui
  email: tianhui@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Wanli
  orcidid: 0000-0003-0436-2685
  surname: Ni
  fullname: Ni, Wanli
  email: niwanli@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Gaofeng
  orcidid: 0000-0002-0880-1182
  surname: Nie
  fullname: Nie, Gaofeng
  email: niegaofeng@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Dusit
  orcidid: 0000-0002-7442-7416
  surname: Niyato
  fullname: Niyato, Dusit
  email: dniyato@ntu.edu.sg
  organization: College of Computing and Data Science, Nanyang Technological University, Jurong West, Singapore
BookMark eNpNkD1PwzAQhi1UJNrCzsAQiTnFH7HjjFWggBTB0KJOKHKcC7g0cbATUP89idqB6d6TnvdOemZo0tgGELomeEEITu4223RBMeULxiMRRfIMTQnnMqQ0kpMxMxESGosLNPN-hzGJBedT9L6G2oRLf2j0p7ON7X2wghKc6qAM1u3edEEGyjWm-Qgq64LU1m3fDVuYmdqM0D38GA0-ME2wNQ724H3wAt2vdV_-Ep1Xau_h6jTn6G31sEmfwuz18TldZqGmEe9CDbismBJYlVhERGjBFddMasl1QSMSJbIAXEApMdOiBCGLijAluaoqmsSKzdHt8W7r7HcPvst3tnfN8DJnlMRxLLCMBwofKe2s9w6qvHWmVu6QE5yPEvNBYj5KzE8Sh8rNsWIA4B-eEMETxv4Al1dwsA
CODEN ITWCAX
Cites_doi 10.23919/JCC.2020.09.009
10.1109/JSAC.2023.3310103
10.1609/aaai.v38i15.29603
10.1016/j.comnet.2022.109380
10.1109/TWC.2023.3270908
10.1561/1300000060
10.1109/ICC42927.2021.9500860
10.1609/aaai.v36i8.20825
10.1109/TWC.2023.3337773
10.1109/SiPS52927.2021.00022
10.1109/TWC.2024.3373015
10.1109/tnnls.2025.3526227
10.1109/TWC.2024.3486377
10.1109/JIOT.2024.3370985
10.1109/tce.2024.3464731
10.1109/CVPR.2016.90
10.1109/TMC.2024.3359040
10.1109/TCOMM.2023.3258485
10.1109/TWC.2015.2394799
10.1109/JSAC.2023.3242719
10.1109/TMC.2023.3338021
10.1109/MNET.001.1900287
10.1109/MWC.015.2200462
10.1609/aaai.v33i01.33015693
10.1145/3065386
10.1109/ICC45041.2023.10278887
10.1109/JIOT.2020.3002925
10.1109/JIOT.2024.3365199
10.1109/JSTSP.2022.3223498
10.1007/978-3-031-79995-2
10.1109/COMST.2023.3316615
10.1109/JIOT.2024.3397677
10.1109/TWC.2020.3037554
10.1109/TWC.2021.3085319
10.1109/TCOMM.2023.3277878
10.1109/TNSE.2022.3228815
10.1109/TWC.2023.3327372
10.1016/j.jnca.2018.05.003
10.1109/TMC.2021.3096846
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2025.3546448
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 5212
ExternalDocumentID 10_1109_TWC_2025_3546448
10916593
Genre orig-research
GrantInformation_xml – fundername: Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund
  grantid: L232052
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-ce0df3a60ad06416c65a5c38c85cb241498be0bed803c6de68bf13a85aff297a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506722000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Sat Sep 06 14:25:16 EDT 2025
Sat Nov 29 07:49:53 EST 2025
Wed Aug 27 01:47:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-ce0df3a60ad06416c65a5c38c85cb241498be0bed803c6de68bf13a85aff297a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0880-1182
0000-0003-0436-2685
0000-0001-8876-1389
0000-0002-7442-7416
0009-0008-6299-4844
PQID 3217776087
PQPubID 105736
PageCount 17
ParticipantIDs crossref_primary_10_1109_TWC_2025_3546448
proquest_journals_3217776087
ieee_primary_10916593
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
Xie (ref17) 2019
ref33
McMahan (ref4); 54
ref10
ref32
ref2
ref1
Simonyan (ref41) 2014
ref39
ref16
ref38
ref19
ref18
Ao (ref35) 2024
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
Harry Hsu (ref43) 2019
ref40
References_xml – ident: ref5
  doi: 10.23919/JCC.2020.09.009
– ident: ref23
  doi: 10.1109/JSAC.2023.3310103
– ident: ref16
  doi: 10.1609/aaai.v38i15.29603
– ident: ref12
  doi: 10.1016/j.comnet.2022.109380
– ident: ref32
  doi: 10.1109/TWC.2023.3270908
– ident: ref27
  doi: 10.1561/1300000060
– year: 2019
  ident: ref43
  article-title: Measuring the effects of non-identical data distribution for federated visual classification
  publication-title: arXiv:1909.06335
– ident: ref15
  doi: 10.1109/ICC42927.2021.9500860
– ident: ref24
  doi: 10.1609/aaai.v36i8.20825
– volume-title: Supplementary Material for the Paper: Semi-asynchronous Federated Split Learning for Computing-limited Devices in Wireless Networks
  year: 2024
  ident: ref35
– ident: ref20
  doi: 10.1109/TWC.2023.3337773
– ident: ref22
  doi: 10.1109/SiPS52927.2021.00022
– ident: ref38
  doi: 10.1109/TWC.2024.3373015
– ident: ref8
  doi: 10.1109/tnnls.2025.3526227
– ident: ref10
  doi: 10.1109/TWC.2024.3486377
– ident: ref25
  doi: 10.1109/JIOT.2024.3370985
– ident: ref13
  doi: 10.1109/tce.2024.3464731
– ident: ref42
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.1109/TMC.2024.3359040
– ident: ref39
  doi: 10.1109/TCOMM.2023.3258485
– ident: ref36
  doi: 10.1109/TWC.2015.2394799
– ident: ref18
  doi: 10.1109/JSAC.2023.3242719
– year: 2014
  ident: ref41
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref30
  doi: 10.1109/TMC.2023.3338021
– volume: 54
  start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref4
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref2
  doi: 10.1109/MNET.001.1900287
– ident: ref26
  doi: 10.1109/MWC.015.2200462
– ident: ref34
  doi: 10.1609/aaai.v33i01.33015693
– ident: ref40
  doi: 10.1145/3065386
– ident: ref19
  doi: 10.1109/ICC45041.2023.10278887
– ident: ref31
  doi: 10.1109/JIOT.2020.3002925
– ident: ref14
  doi: 10.1109/JIOT.2024.3365199
– ident: ref33
  doi: 10.1109/JSTSP.2022.3223498
– ident: ref29
  doi: 10.1007/978-3-031-79995-2
– ident: ref1
  doi: 10.1109/COMST.2023.3316615
– ident: ref11
  doi: 10.1109/JIOT.2024.3397677
– ident: ref28
  doi: 10.1109/TWC.2020.3037554
– ident: ref37
  doi: 10.1109/TWC.2021.3085319
– ident: ref6
  doi: 10.1109/TCOMM.2023.3277878
– year: 2019
  ident: ref17
  article-title: Asynchronous federated optimization
  publication-title: arXiv:1903.03934
– ident: ref3
  doi: 10.1109/TNSE.2022.3228815
– ident: ref9
  doi: 10.1109/TWC.2023.3327372
– ident: ref44
  doi: 10.1016/j.jnca.2018.05.003
– ident: ref21
  doi: 10.1109/TMC.2021.3096846
SSID ssj0017655
Score 2.4997137
Snippet The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5196
SubjectTerms Algorithms
Artificial intelligence
Computational modeling
Convergence
convergence analysis
Data models
Edge computing
Energy consumption
Federated split learning
Heterogeneity
Learning
Mixed integer
Network latency
Nonlinear programming
Optimization
Performance evaluation
resource allocation
semi-asynchronous model update
Servers
Training
Upper bounds
Wireless networks
Title Semi-Asynchronous Federated Split Learning for Computing-Limited Devices in Wireless Networks
URI https://ieeexplore.ieee.org/document/10916593
https://www.proquest.com/docview/3217776087
Volume 24
WOSCitedRecordID wos001506722000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1scaELnxWrVWbhxsW0aSbzWpZqcVWEVuxGwmQeUtBUmlTw752ZpKUiLtwlkIQwJ3MfufeeA8CN8p2FkeLIWi5RQoREMo4EUpxkvkqUEaWD2AQbj_lsJh7rYfUwC2OMCc1npusPQy1fL9TK_yrreRJLSgRugAZjtBrW2pQMGA0Sp24He2EZtqlJRqI3fR66TDAmXUwSn4_88EFBVOWXJQ7uZXT4zxc7Agd1HAkHFfDHYMfkJ2B_i13wFLxMzPscDYqvXHkGXJfiw5GnjnDRpYYTF3yWsGZXfYUudIWVwIM7Q_XUE7wzwY7AeQ59l-ybs4pwXPWNFy3wNLqfDh9QraaAVJyQEjlItMWSRlK7MKRPFSWSKMwdKipzfjwRPDNRZjSPsKLaUJ7ZPpacSGtjwSQ-A818kZtzAJmWLosyGFshE2y9eocURGuh-honlLfB7Xp904-KNCMNyUYkUodF6rFIayzaoOXXc-u6ainboLNGJK23VZFil0A55CPOLv647RLs-adXzVwd0CyXK3MFdtVnOS-W1-GL-QbpU8CH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSDnxPnZw5ePGTrliZNjmM6Js4hONGLlDRJZaCdrJvgf2-S1jERD95aaGnJr3kffe_9fgDnynUWBorjNOUSh1RILFuBwIrTxFWJEqq0F5uIBgP-9CTuymF1PwtjjPHNZ6buDn0tX4_VzP0qazgSS0YFWYYVJ51VjmvNiwYR8yKndg87aZloXpUMRGP42LG5YIvWCQ1dRvLDC3lZlV-22DuY7tY_X20bNstIErUL6HdgyWS7sLHAL7gHz_fmbYTb-WemHAeuTfJR15FH2PhSo3sbfk5Rya_6gmzwigqJB3uGy7kndGm8JUGjDLk-2VdrF9Gg6BzPq_DQvRp2erjUU8CqFdIptqDolEgWSG0DkSZTjEqqCLe4qMR68lDwxASJ0TwgimnDeJI2ieRUpmlLRJLsQyUbZ-YAUKSlzaMMIamQIUmdfocUVGuhmpqEjNfg4nt94_eCNiP26UYgYotF7LCISyxqUHXruXBdsZQ1OP5GJC43Vh4Tm0JFEQt4dPjHbWew1hve9uP-9eDmCNbdk4rWrmOoTCczcwKr6mM6yien_uv5Ah0Pw9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Asynchronous+Federated+Split+Learning+for+Computing-Limited+Devices+in+Wireless+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Ao%2C+Huiqing&rft.au=Tian%2C+Hui&rft.au=Ni%2C+Wanli&rft.au=Nie%2C+Gaofeng&rft.date=2025-06-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=24&rft.issue=6&rft.spage=5196&rft.epage=5212&rft_id=info:doi/10.1109%2FTWC.2025.3546448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2025_3546448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon