Semi-Asynchronous Federated Split Learning for Computing-Limited Devices in Wireless Networks
The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid training paradigm, federated split learning (FSL) leverages data and model parallelism to enhance training efficiency. However, existing FSL enc...
Uložené v:
| Vydané v: | IEEE transactions on wireless communications Ročník 24; číslo 6; s. 5196 - 5212 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1536-1276, 1558-2248 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid training paradigm, federated split learning (FSL) leverages data and model parallelism to enhance training efficiency. However, existing FSL encounters unacceptable waiting latency due to device heterogeneity and synchronous model aggregation. To address this issue, we propose a semi-asynchronous FSL (SAFSL) framework that enables personalized model splitting and aperiodic model aggregation. We derive the convergence upper bound by considering factors such as the number of devices, training iterations, and data heterogeneity. To minimize the long-term average training latency while maintaining high energy efficiency in resource-constrained wireless networks, we formulate a stochastic mixed-integer nonlinear programming problem. By decomposing it into multiple sub-problems in each round, we propose a Lyapunov-based alternating optimization algorithm to solve it in an online manner. Numerical results demonstrate that our SAFSL achieves faster convergence with reduced communication overhead while maintaining high prediction performance under non-independent and identically distributed data, outperforming state-of-the-art benchmarks. Moreover, our algorithm achieves a low training latency, highlighting its superior performance and effectiveness. |
|---|---|
| AbstractList | The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid training paradigm, federated split learning (FSL) leverages data and model parallelism to enhance training efficiency. However, existing FSL encounters unacceptable waiting latency due to device heterogeneity and synchronous model aggregation. To address this issue, we propose a semi-asynchronous FSL (SAFSL) framework that enables personalized model splitting and aperiodic model aggregation. We derive the convergence upper bound by considering factors such as the number of devices, training iterations, and data heterogeneity. To minimize the long-term average training latency while maintaining high energy efficiency in resource-constrained wireless networks, we formulate a stochastic mixed-integer nonlinear programming problem. By decomposing it into multiple sub-problems in each round, we propose a Lyapunov-based alternating optimization algorithm to solve it in an online manner. Numerical results demonstrate that our SAFSL achieves faster convergence with reduced communication overhead while maintaining high prediction performance under non-independent and identically distributed data, outperforming state-of-the-art benchmarks. Moreover, our algorithm achieves a low training latency, highlighting its superior performance and effectiveness. |
| Author | Ni, Wanli Nie, Gaofeng Tian, Hui Ao, Huiqing Niyato, Dusit |
| Author_xml | – sequence: 1 givenname: Huiqing orcidid: 0009-0008-6299-4844 surname: Ao fullname: Ao, Huiqing email: hqao@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Hui orcidid: 0000-0001-8876-1389 surname: Tian fullname: Tian, Hui email: tianhui@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Wanli orcidid: 0000-0003-0436-2685 surname: Ni fullname: Ni, Wanli email: niwanli@tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Gaofeng orcidid: 0000-0002-0880-1182 surname: Nie fullname: Nie, Gaofeng email: niegaofeng@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 5 givenname: Dusit orcidid: 0000-0002-7442-7416 surname: Niyato fullname: Niyato, Dusit email: dniyato@ntu.edu.sg organization: College of Computing and Data Science, Nanyang Technological University, Jurong West, Singapore |
| BookMark | eNpNkD1PwzAQhi1UJNrCzsAQiTnFH7HjjFWggBTB0KJOKHKcC7g0cbATUP89idqB6d6TnvdOemZo0tgGELomeEEITu4223RBMeULxiMRRfIMTQnnMqQ0kpMxMxESGosLNPN-hzGJBedT9L6G2oRLf2j0p7ON7X2wghKc6qAM1u3edEEGyjWm-Qgq64LU1m3fDVuYmdqM0D38GA0-ME2wNQ724H3wAt2vdV_-Ep1Xau_h6jTn6G31sEmfwuz18TldZqGmEe9CDbismBJYlVhERGjBFddMasl1QSMSJbIAXEApMdOiBCGLijAluaoqmsSKzdHt8W7r7HcPvst3tnfN8DJnlMRxLLCMBwofKe2s9w6qvHWmVu6QE5yPEvNBYj5KzE8Sh8rNsWIA4B-eEMETxv4Al1dwsA |
| CODEN | ITWCAX |
| Cites_doi | 10.23919/JCC.2020.09.009 10.1109/JSAC.2023.3310103 10.1609/aaai.v38i15.29603 10.1016/j.comnet.2022.109380 10.1109/TWC.2023.3270908 10.1561/1300000060 10.1109/ICC42927.2021.9500860 10.1609/aaai.v36i8.20825 10.1109/TWC.2023.3337773 10.1109/SiPS52927.2021.00022 10.1109/TWC.2024.3373015 10.1109/tnnls.2025.3526227 10.1109/TWC.2024.3486377 10.1109/JIOT.2024.3370985 10.1109/tce.2024.3464731 10.1109/CVPR.2016.90 10.1109/TMC.2024.3359040 10.1109/TCOMM.2023.3258485 10.1109/TWC.2015.2394799 10.1109/JSAC.2023.3242719 10.1109/TMC.2023.3338021 10.1109/MNET.001.1900287 10.1109/MWC.015.2200462 10.1609/aaai.v33i01.33015693 10.1145/3065386 10.1109/ICC45041.2023.10278887 10.1109/JIOT.2020.3002925 10.1109/JIOT.2024.3365199 10.1109/JSTSP.2022.3223498 10.1007/978-3-031-79995-2 10.1109/COMST.2023.3316615 10.1109/JIOT.2024.3397677 10.1109/TWC.2020.3037554 10.1109/TWC.2021.3085319 10.1109/TCOMM.2023.3277878 10.1109/TNSE.2022.3228815 10.1109/TWC.2023.3327372 10.1016/j.jnca.2018.05.003 10.1109/TMC.2021.3096846 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2025.3546448 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 5212 |
| ExternalDocumentID | 10_1109_TWC_2025_3546448 10916593 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund grantid: L232052 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-ce0df3a60ad06416c65a5c38c85cb241498be0bed803c6de68bf13a85aff297a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506722000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Sat Sep 06 14:25:16 EDT 2025 Sat Nov 29 07:49:53 EST 2025 Wed Aug 27 01:47:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-ce0df3a60ad06416c65a5c38c85cb241498be0bed803c6de68bf13a85aff297a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0880-1182 0000-0003-0436-2685 0000-0001-8876-1389 0000-0002-7442-7416 0009-0008-6299-4844 |
| PQID | 3217776087 |
| PQPubID | 105736 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TWC_2025_3546448 proquest_journals_3217776087 ieee_primary_10916593 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 Xie (ref17) 2019 ref33 McMahan (ref4); 54 ref10 ref32 ref2 ref1 Simonyan (ref41) 2014 ref39 ref16 ref38 ref19 ref18 Ao (ref35) 2024 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 Harry Hsu (ref43) 2019 ref40 |
| References_xml | – ident: ref5 doi: 10.23919/JCC.2020.09.009 – ident: ref23 doi: 10.1109/JSAC.2023.3310103 – ident: ref16 doi: 10.1609/aaai.v38i15.29603 – ident: ref12 doi: 10.1016/j.comnet.2022.109380 – ident: ref32 doi: 10.1109/TWC.2023.3270908 – ident: ref27 doi: 10.1561/1300000060 – year: 2019 ident: ref43 article-title: Measuring the effects of non-identical data distribution for federated visual classification publication-title: arXiv:1909.06335 – ident: ref15 doi: 10.1109/ICC42927.2021.9500860 – ident: ref24 doi: 10.1609/aaai.v36i8.20825 – volume-title: Supplementary Material for the Paper: Semi-asynchronous Federated Split Learning for Computing-limited Devices in Wireless Networks year: 2024 ident: ref35 – ident: ref20 doi: 10.1109/TWC.2023.3337773 – ident: ref22 doi: 10.1109/SiPS52927.2021.00022 – ident: ref38 doi: 10.1109/TWC.2024.3373015 – ident: ref8 doi: 10.1109/tnnls.2025.3526227 – ident: ref10 doi: 10.1109/TWC.2024.3486377 – ident: ref25 doi: 10.1109/JIOT.2024.3370985 – ident: ref13 doi: 10.1109/tce.2024.3464731 – ident: ref42 doi: 10.1109/CVPR.2016.90 – ident: ref7 doi: 10.1109/TMC.2024.3359040 – ident: ref39 doi: 10.1109/TCOMM.2023.3258485 – ident: ref36 doi: 10.1109/TWC.2015.2394799 – ident: ref18 doi: 10.1109/JSAC.2023.3242719 – year: 2014 ident: ref41 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref30 doi: 10.1109/TMC.2023.3338021 – volume: 54 start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref4 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref2 doi: 10.1109/MNET.001.1900287 – ident: ref26 doi: 10.1109/MWC.015.2200462 – ident: ref34 doi: 10.1609/aaai.v33i01.33015693 – ident: ref40 doi: 10.1145/3065386 – ident: ref19 doi: 10.1109/ICC45041.2023.10278887 – ident: ref31 doi: 10.1109/JIOT.2020.3002925 – ident: ref14 doi: 10.1109/JIOT.2024.3365199 – ident: ref33 doi: 10.1109/JSTSP.2022.3223498 – ident: ref29 doi: 10.1007/978-3-031-79995-2 – ident: ref1 doi: 10.1109/COMST.2023.3316615 – ident: ref11 doi: 10.1109/JIOT.2024.3397677 – ident: ref28 doi: 10.1109/TWC.2020.3037554 – ident: ref37 doi: 10.1109/TWC.2021.3085319 – ident: ref6 doi: 10.1109/TCOMM.2023.3277878 – year: 2019 ident: ref17 article-title: Asynchronous federated optimization publication-title: arXiv:1903.03934 – ident: ref3 doi: 10.1109/TNSE.2022.3228815 – ident: ref9 doi: 10.1109/TWC.2023.3327372 – ident: ref44 doi: 10.1016/j.jnca.2018.05.003 – ident: ref21 doi: 10.1109/TMC.2021.3096846 |
| SSID | ssj0017655 |
| Score | 2.4997137 |
| Snippet | The rapid evolution of edge computing and artificial intelligence (AI) paves the way for pervasive intelligence in the next-generation network. As a hybrid... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5196 |
| SubjectTerms | Algorithms Artificial intelligence Computational modeling Convergence convergence analysis Data models Edge computing Energy consumption Federated split learning Heterogeneity Learning Mixed integer Network latency Nonlinear programming Optimization Performance evaluation resource allocation semi-asynchronous model update Servers Training Upper bounds Wireless networks |
| Title | Semi-Asynchronous Federated Split Learning for Computing-Limited Devices in Wireless Networks |
| URI | https://ieeexplore.ieee.org/document/10916593 https://www.proquest.com/docview/3217776087 |
| Volume | 24 |
| WOSCitedRecordID | wos001506722000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1scaELnxWrVWbhxsW0aSbzWpZqcVWEVuxGwmQeUtBUmlTw752ZpKUiLtwlkIQwJ3MfufeeA8CN8p2FkeLIWi5RQoREMo4EUpxkvkqUEaWD2AQbj_lsJh7rYfUwC2OMCc1npusPQy1fL9TK_yrreRJLSgRugAZjtBrW2pQMGA0Sp24He2EZtqlJRqI3fR66TDAmXUwSn4_88EFBVOWXJQ7uZXT4zxc7Agd1HAkHFfDHYMfkJ2B_i13wFLxMzPscDYqvXHkGXJfiw5GnjnDRpYYTF3yWsGZXfYUudIWVwIM7Q_XUE7wzwY7AeQ59l-ybs4pwXPWNFy3wNLqfDh9QraaAVJyQEjlItMWSRlK7MKRPFSWSKMwdKipzfjwRPDNRZjSPsKLaUJ7ZPpacSGtjwSQ-A818kZtzAJmWLosyGFshE2y9eocURGuh-honlLfB7Xp904-KNCMNyUYkUodF6rFIayzaoOXXc-u6ainboLNGJK23VZFil0A55CPOLv647RLs-adXzVwd0CyXK3MFdtVnOS-W1-GL-QbpU8CH |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oFNSDnxPnZw5ePGTrliZNjmM6Js4hONGLlDRJZaCdrJvgf2-S1jERD95aaGnJr3kffe_9fgDnynUWBorjNOUSh1RILFuBwIrTxFWJEqq0F5uIBgP-9CTuymF1PwtjjPHNZ6buDn0tX4_VzP0qazgSS0YFWYYVJ51VjmvNiwYR8yKndg87aZloXpUMRGP42LG5YIvWCQ1dRvLDC3lZlV-22DuY7tY_X20bNstIErUL6HdgyWS7sLHAL7gHz_fmbYTb-WemHAeuTfJR15FH2PhSo3sbfk5Rya_6gmzwigqJB3uGy7kndGm8JUGjDLk-2VdrF9Gg6BzPq_DQvRp2erjUU8CqFdIptqDolEgWSG0DkSZTjEqqCLe4qMR68lDwxASJ0TwgimnDeJI2ieRUpmlLRJLsQyUbZ-YAUKSlzaMMIamQIUmdfocUVGuhmpqEjNfg4nt94_eCNiP26UYgYotF7LCISyxqUHXruXBdsZQ1OP5GJC43Vh4Tm0JFEQt4dPjHbWew1hve9uP-9eDmCNbdk4rWrmOoTCczcwKr6mM6yien_uv5Ah0Pw9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Asynchronous+Federated+Split+Learning+for+Computing-Limited+Devices+in+Wireless+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Ao%2C+Huiqing&rft.au=Tian%2C+Hui&rft.au=Ni%2C+Wanli&rft.au=Nie%2C+Gaofeng&rft.date=2025-06-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=24&rft.issue=6&rft.spage=5196&rft.epage=5212&rft_id=info:doi/10.1109%2FTWC.2025.3546448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2025_3546448 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |