Multi-Group Multicasting Using Reconfigurable Intelligent Surfaces: A Deep Learning Approach

Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the performance of future wireless communication systems. While the majority of papers in the literature considers single-RIS scenarios, the potential...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 24; no. 6; pp. 5337 - 5351
Main Authors: Ding, Chunxia, Jin, Weijie, Li, Xiao, Matthaiou, Michail, Yi, Xinping, Jin, Shi
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the performance of future wireless communication systems. While the majority of papers in the literature considers single-RIS scenarios, the potential deployment of multiple RISs, that offer ubiquitous connectivity for diverse user demands, calls for further investigation. This paper considers a downlink multi-group multicast system underpinned by multiple RISs and aims to maximize the sum spectral efficiency subject to an overall transmit power constraint. This optimization problem is highly challenging due to the non-convex, non-smooth, and non-differentiable properties of the objective function, as well as the non-convex unit modulus constraint. To address this complex problem, we propose a model-driven deep learning (DL) approach. This involves first solving the joint active and passive beamforming design through an alternating projected gradient (APG) algorithm with an approximate objective function. The APG algorithm is then unfolded into an iterative procedure using multiple layers with trainable parameters. A network training method is proposed to ensure that the performance improves with the number of iterations. Remarkably, our model is also nicely generalizable to the imperfect channel state information (CSI) scenario, without any change to the network architecture, by simply combining the recursive approximation method and adding some long/short-term trainable parameters to accommodate the two-timescale transmission protocol. Our simulation results demonstrate the superiority of our proposed DL method over existing algorithms in terms of both complexity and performance. Specifically, the proposed model-driven DL method reduces the runtime by approximately 80% compared to the APG algorithm and 99.97% compared to the majorization-minimization algorithm, while it also achieves comparable performance. Furthermore, our proposed method for imperfect CSI scenarios reduces the performance loss by 5%-10% compared to the proposed method without considering the influence of imperfect CSI.
AbstractList Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the performance of future wireless communication systems. While the majority of papers in the literature considers single-RIS scenarios, the potential deployment of multiple RISs, that offer ubiquitous connectivity for diverse user demands, calls for further investigation. This paper considers a downlink multi-group multicast system underpinned by multiple RISs and aims to maximize the sum spectral efficiency subject to an overall transmit power constraint. This optimization problem is highly challenging due to the non-convex, non-smooth, and non-differentiable properties of the objective function, as well as the non-convex unit modulus constraint. To address this complex problem, we propose a model-driven deep learning (DL) approach. This involves first solving the joint active and passive beamforming design through an alternating projected gradient (APG) algorithm with an approximate objective function. The APG algorithm is then unfolded into an iterative procedure using multiple layers with trainable parameters. A network training method is proposed to ensure that the performance improves with the number of iterations. Remarkably, our model is also nicely generalizable to the imperfect channel state information (CSI) scenario, without any change to the network architecture, by simply combining the recursive approximation method and adding some long/short-term trainable parameters to accommodate the two-timescale transmission protocol. Our simulation results demonstrate the superiority of our proposed DL method over existing algorithms in terms of both complexity and performance. Specifically, the proposed model-driven DL method reduces the runtime by approximately 80% compared to the APG algorithm and 99.97% compared to the majorization-minimization algorithm, while it also achieves comparable performance. Furthermore, our proposed method for imperfect CSI scenarios reduces the performance loss by 5%-10% compared to the proposed method without considering the influence of imperfect CSI.
Author Li, Xiao
Ding, Chunxia
Jin, Weijie
Yi, Xinping
Jin, Shi
Matthaiou, Michail
Author_xml – sequence: 1
  givenname: Chunxia
  orcidid: 0009-0002-2758-7350
  surname: Ding
  fullname: Ding, Chunxia
  email: dingchunxia@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 2
  givenname: Weijie
  orcidid: 0000-0002-5546-6196
  surname: Jin
  fullname: Jin, Weijie
  email: jinweijie@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 3
  givenname: Xiao
  orcidid: 0000-0001-9660-9053
  surname: Li
  fullname: Li, Xiao
  email: li_xiao@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 4
  givenname: Michail
  orcidid: 0000-0001-9235-7741
  surname: Matthaiou
  fullname: Matthaiou, Michail
  email: m.matthaiou@qub.ac.uk
  organization: Centre for Wireless Innovation (CWI), Queen's University Belfast, Belfast, U.K
– sequence: 5
  givenname: Xinping
  orcidid: 0000-0001-5163-2364
  surname: Yi
  fullname: Yi, Xinping
  email: xyi@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 6
  givenname: Shi
  orcidid: 0000-0003-0271-6021
  surname: Jin
  fullname: Jin, Shi
  email: jinshi@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
BookMark eNpNkL1PwzAUxC1UJNrCzsAQiTnFdvwVtqpAqVSEBK1YkCzHfS6pghPsZOC_J6EMLO9uuHsn_SZo5GsPCF0SPCME5zebt8WMYspnGWdCMnmCxoRzlVLK1GjwmUgJleIMTWI8YEyk4HyM3p-6qi3TZai7Jvn11sS29PtkG4f7Arb2rtx3wRQVJCvfQlWVe_Bt8toFZyzE22Se3AE0yRpM8ENp3jShNvbjHJ06U0W4-NMp2j7cbxaP6fp5uVrM16mljLdpkVtgVoEShBUFhUIJ56TagXSKMlnkUDAsdznbWSmpkzsiOWRUECqkcUJkU3R9_NvPfnUQW32ou-D7SZ1RIqXkgmd9Ch9TNtQxBnC6CeWnCd-aYD0w1D1DPTDUfwz7ytWxUgLAv3hOFM9Z9gOkSm-U
CODEN ITWCAX
Cites_doi 10.1109/WCSP55476.2022.10039488
10.1590/S0101-82052003000100003
10.1109/TWC.2020.2970061
10.1109/JSAC.2020.3000826
10.1109/ICCT59356.2023.10419704
10.1109/GLOBECOM48099.2022.10001087
10.1109/TWC.2021.3075885
10.1109/MCOM.001.2000208
10.1109/TVT.2022.3226220
10.1109/LWC.2020.2999356
10.1109/TWC.2019.2936025
10.2140/pjm.1966.16.1
10.1109/TSP.2020.3019666
10.1109/JSAC.2021.3078502
10.1109/LWC.2020.2969167
10.1109/TVT.2023.3332107
10.1109/TSP.2020.2990098
10.1109/TCOMM.2021.3051897
10.1109/TCOMM.2021.3096933
10.1109/TVT.2022.3228794
10.1109/LWC.2022.3229441
10.1109/TCOMM.2024.3385919
10.1109/GLOCOM.2018.8647620
10.1109/TWC.2023.3336742
10.1109/TCOMM.2024.3382332
10.1109/PIMRC48278.2020.9217160
10.1109/TCOMM.2021.3104871
10.23919/JCC.2021.03.006
10.1109/TVT.2020.3031657
10.1109/TVT.2019.2958139
10.1109/TVT.2019.2923997
10.1109/MWC.011.2200356
10.1109/TWC.2020.3004330
10.1109/TCCN.2021.3128605
10.1109/LWC.2019.2961357
10.1109/MCOM.2012.6353684
10.1109/LCOMM.2020.3002557
10.1109/TVT.2021.3080302
10.1109/TWC.2020.3030882
10.1109/TWC.2022.3206773
10.1109/GLOBECOM46510.2021.9685707
10.1007/s10107-004-0552-5
10.1109/TSP.2018.2871389
10.1109/TWC.2023.3330977
10.1109/SPAWC.2019.8815412
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2025.3546747
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 5351
ExternalDocumentID 10_1109_TWC_2025_3546747
10918594
Genre orig-research
GrantInformation_xml – fundername: Technologies Research and Development Program of Jiangsu (Prospective and Key Technologies for Industry)
  grantid: BE2023022-1; BE2023022
  funderid: 10.13039/501100013068
– fundername: European Research Council (ERC) through the European Union’s Horizon 2020 Research and Innovation Program
  grantid: 101001331
– fundername: National Natural Science Foundation of China
  grantid: 62231009; 62261160576; 62471129
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2242023K5003
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-b9ce4c8e8614bb2eb86ff78de7f8247b9eb407d94dc772f7d175e3261267af663
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506724400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Mon Oct 13 15:41:10 EDT 2025
Sat Nov 29 07:54:00 EST 2025
Wed Aug 27 01:47:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-b9ce4c8e8614bb2eb86ff78de7f8247b9eb407d94dc772f7d175e3261267af663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9235-7741
0000-0001-5163-2364
0009-0002-2758-7350
0000-0001-9660-9053
0000-0002-5546-6196
0000-0003-0271-6021
PQID 3217775653
PQPubID 105736
PageCount 15
ParticipantIDs crossref_primary_10_1109_TWC_2025_3546747
proquest_journals_3217775653
ieee_primary_10918594
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
(ref46) 2010
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref23
  doi: 10.1109/WCSP55476.2022.10039488
– ident: ref43
  doi: 10.1590/S0101-82052003000100003
– ident: ref45
  doi: 10.1109/TWC.2020.2970061
– ident: ref8
  doi: 10.1109/JSAC.2020.3000826
– ident: ref1
  doi: 10.1109/ICCT59356.2023.10419704
– ident: ref28
  doi: 10.1109/GLOBECOM48099.2022.10001087
– ident: ref18
  doi: 10.1109/TWC.2021.3075885
– ident: ref3
  doi: 10.1109/MCOM.001.2000208
– ident: ref32
  doi: 10.1109/TVT.2022.3226220
– ident: ref15
  doi: 10.1109/LWC.2020.2999356
– ident: ref5
  doi: 10.1109/TWC.2019.2936025
– ident: ref42
  doi: 10.2140/pjm.1966.16.1
– ident: ref37
  doi: 10.1109/TSP.2020.3019666
– ident: ref40
  doi: 10.1109/JSAC.2021.3078502
– ident: ref12
  doi: 10.1109/LWC.2020.2969167
– ident: ref6
  doi: 10.1109/TVT.2023.3332107
– ident: ref27
  doi: 10.1109/TSP.2020.2990098
– ident: ref9
  doi: 10.1109/TCOMM.2021.3051897
– ident: ref25
  doi: 10.1109/TCOMM.2021.3096933
– ident: ref39
  doi: 10.1109/TVT.2022.3228794
– ident: ref19
  doi: 10.1109/LWC.2022.3229441
– ident: ref22
  doi: 10.1109/TCOMM.2024.3385919
– ident: ref11
  doi: 10.1109/GLOCOM.2018.8647620
– ident: ref35
  doi: 10.1109/TWC.2023.3336742
– ident: ref10
  doi: 10.1109/TCOMM.2024.3382332
– ident: ref14
  doi: 10.1109/PIMRC48278.2020.9217160
– ident: ref24
  doi: 10.1109/TCOMM.2021.3104871
– ident: ref7
  doi: 10.23919/JCC.2021.03.006
– volume-title: Further Advancements for E-UTRA Physical Layer Aspects (Release 9)
  year: 2010
  ident: ref46
– ident: ref13
  doi: 10.1109/TVT.2020.3031657
– ident: ref21
  doi: 10.1109/TVT.2019.2958139
– ident: ref38
  doi: 10.1109/TVT.2019.2923997
– ident: ref2
  doi: 10.1109/MWC.011.2200356
– ident: ref17
  doi: 10.1109/TWC.2020.3004330
– ident: ref34
  doi: 10.1109/TCCN.2021.3128605
– ident: ref16
  doi: 10.1109/LWC.2019.2961357
– ident: ref20
  doi: 10.1109/MCOM.2012.6353684
– ident: ref36
  doi: 10.1109/LCOMM.2020.3002557
– ident: ref26
  doi: 10.1109/TVT.2021.3080302
– ident: ref29
  doi: 10.1109/TWC.2020.3030882
– ident: ref30
  doi: 10.1109/TWC.2022.3206773
– ident: ref31
  doi: 10.1109/GLOBECOM46510.2021.9685707
– ident: ref41
  doi: 10.1007/s10107-004-0552-5
– ident: ref44
  doi: 10.1109/TSP.2018.2871389
– ident: ref4
  doi: 10.1109/TWC.2023.3330977
– ident: ref33
  doi: 10.1109/SPAWC.2019.8815412
SSID ssj0017655
Score 2.4738736
Snippet Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5337
SubjectTerms Algorithms
Approximation algorithms
Array signal processing
Beamforming
Channel estimation
Complexity
Constraints
Deep learning
gradient descent
Imperfect CSI
model-driven deep learning
multicast
Multicast algorithms
Multicasting
Optimization
Parameters
Performance enhancement
Reconfigurable intelligent surfaces
Simulation
System performance
Training
Wireless communication
Wireless communication systems
Title Multi-Group Multicasting Using Reconfigurable Intelligent Surfaces: A Deep Learning Approach
URI https://ieeexplore.ieee.org/document/10918594
https://www.proquest.com/docview/3217775653
Volume 24
WOSCitedRecordID wos001506724400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyIKBXlgYUgfid2z2apCBRKqkCjQASmK7XPVpa364PdjO2lVhBjYPCRRdBfnvvPd9x0hN8YIHbcyiIBLHjGdJZHKYhX56MHQGmSBPvb-DP2-GA7lS0FWD1wYRAzNZ1j3y1DLN1O98kdlDS9iKbhkJVICgJystSkZQDuMOHU72A-WgU1Nsikbg4-uywRjXk-4H64BP2JQGKry608cwkvv8J8vdkQOChxJO7njj8kOTk7I_pa64Cn5DOTaKJwu0bDW2cJ3OdPQJ0B95jmx49Fq7ulT9Gkjzrmkr6u59b1ad7RD7xFntJBhHdFOoUFeIW-9h0H3MSqGKUQ6ZnwZKamRaYHCxWOlYlSibS0Ig2BFzEBJVC63M5IZ7QC3BeNwBSZeYKwNmXW45IyUJ9MJnhOaGGGsdlCGt5CxRKiWNhKabSUZdwteJbdr86azXDMjDblGU6bOFal3RVq4okoq3pxb1-WWrJLa2iFpsasWaeLyJwAHQZOLP267JHv-6XkvV42Ul_MVXpFd_bUcL-bX4YP5BrTavqI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xkoCBZxHl6YGFIdAmdm2zVYWqFaVCokAHpCi2z1WXgvrg92M7aQVCDGweEiW6i3Pf-e77DuDCGKHjasYjziSLqM6SSGWxinz0oGgN0kAfe-nwblf0-_KxIKsHLgwihuYzvPLLUMs373rmj8quvYilYJIuwyqjNK7mdK1F0YDXwpBTt4f9aBm-qEpW5HXvteFywZhdJcyP1-A_olAYq_LrXxwCTHP7n6-2A1sFkiT13PW7sISjPdj8pi-4D2-BXhuF8yUS1jqb-D5nEjoFiM89R3Y4mI09gYq0F_KcU_I0G1vfrXVD6uQW8YMUQqwDUi9UyEvw3LzrNVpRMU4h0jFl00hJjVQLFC4iKxWjEjVruTDIrYgpVxKVy-6MpEY7yG25ccgCEy8xVuOZdcjkAFZG7yM8BJIYYax2YIZVkdJEqKo2kldqSlLmFqwMl3Pzph-5akYaso2KTJ0rUu-KtHBFGUrenN-uyy1ZhpO5Q9JiX03SxGVQnDsQmhz9cds5rLd6D5200-7eH8OGf1Le2XUCK9PxDE9hTX9Oh5PxWfh4vgDLpcHp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Group+Multicasting+Using+Reconfigurable+Intelligent+Surfaces%3A+A+Deep+Learning+Approach&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Ding%2C+Chunxia&rft.au=Jin%2C+Weijie&rft.au=Li%2C+Xiao&rft.au=Matthaiou%2C+Michail&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=24&rft.issue=10&rft.spage=5337&rft.epage=5351&rft_id=info:doi/10.1109%2FTWC.2025.3546747&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon