Multi-Group Multicasting Using Reconfigurable Intelligent Surfaces: A Deep Learning Approach
Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the performance of future wireless communication systems. While the majority of papers in the literature considers single-RIS scenarios, the potential...
Saved in:
| Published in: | IEEE transactions on wireless communications Vol. 24; no. 6; pp. 5337 - 5351 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the performance of future wireless communication systems. While the majority of papers in the literature considers single-RIS scenarios, the potential deployment of multiple RISs, that offer ubiquitous connectivity for diverse user demands, calls for further investigation. This paper considers a downlink multi-group multicast system underpinned by multiple RISs and aims to maximize the sum spectral efficiency subject to an overall transmit power constraint. This optimization problem is highly challenging due to the non-convex, non-smooth, and non-differentiable properties of the objective function, as well as the non-convex unit modulus constraint. To address this complex problem, we propose a model-driven deep learning (DL) approach. This involves first solving the joint active and passive beamforming design through an alternating projected gradient (APG) algorithm with an approximate objective function. The APG algorithm is then unfolded into an iterative procedure using multiple layers with trainable parameters. A network training method is proposed to ensure that the performance improves with the number of iterations. Remarkably, our model is also nicely generalizable to the imperfect channel state information (CSI) scenario, without any change to the network architecture, by simply combining the recursive approximation method and adding some long/short-term trainable parameters to accommodate the two-timescale transmission protocol. Our simulation results demonstrate the superiority of our proposed DL method over existing algorithms in terms of both complexity and performance. Specifically, the proposed model-driven DL method reduces the runtime by approximately 80% compared to the APG algorithm and 99.97% compared to the majorization-minimization algorithm, while it also achieves comparable performance. Furthermore, our proposed method for imperfect CSI scenarios reduces the performance loss by 5%-10% compared to the proposed method without considering the influence of imperfect CSI. |
|---|---|
| AbstractList | Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the performance of future wireless communication systems. While the majority of papers in the literature considers single-RIS scenarios, the potential deployment of multiple RISs, that offer ubiquitous connectivity for diverse user demands, calls for further investigation. This paper considers a downlink multi-group multicast system underpinned by multiple RISs and aims to maximize the sum spectral efficiency subject to an overall transmit power constraint. This optimization problem is highly challenging due to the non-convex, non-smooth, and non-differentiable properties of the objective function, as well as the non-convex unit modulus constraint. To address this complex problem, we propose a model-driven deep learning (DL) approach. This involves first solving the joint active and passive beamforming design through an alternating projected gradient (APG) algorithm with an approximate objective function. The APG algorithm is then unfolded into an iterative procedure using multiple layers with trainable parameters. A network training method is proposed to ensure that the performance improves with the number of iterations. Remarkably, our model is also nicely generalizable to the imperfect channel state information (CSI) scenario, without any change to the network architecture, by simply combining the recursive approximation method and adding some long/short-term trainable parameters to accommodate the two-timescale transmission protocol. Our simulation results demonstrate the superiority of our proposed DL method over existing algorithms in terms of both complexity and performance. Specifically, the proposed model-driven DL method reduces the runtime by approximately 80% compared to the APG algorithm and 99.97% compared to the majorization-minimization algorithm, while it also achieves comparable performance. Furthermore, our proposed method for imperfect CSI scenarios reduces the performance loss by 5%-10% compared to the proposed method without considering the influence of imperfect CSI. |
| Author | Li, Xiao Ding, Chunxia Jin, Weijie Yi, Xinping Jin, Shi Matthaiou, Michail |
| Author_xml | – sequence: 1 givenname: Chunxia orcidid: 0009-0002-2758-7350 surname: Ding fullname: Ding, Chunxia email: dingchunxia@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 2 givenname: Weijie orcidid: 0000-0002-5546-6196 surname: Jin fullname: Jin, Weijie email: jinweijie@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 3 givenname: Xiao orcidid: 0000-0001-9660-9053 surname: Li fullname: Li, Xiao email: li_xiao@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 4 givenname: Michail orcidid: 0000-0001-9235-7741 surname: Matthaiou fullname: Matthaiou, Michail email: m.matthaiou@qub.ac.uk organization: Centre for Wireless Innovation (CWI), Queen's University Belfast, Belfast, U.K – sequence: 5 givenname: Xinping orcidid: 0000-0001-5163-2364 surname: Yi fullname: Yi, Xinping email: xyi@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 6 givenname: Shi orcidid: 0000-0003-0271-6021 surname: Jin fullname: Jin, Shi email: jinshi@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China |
| BookMark | eNpNkL1PwzAUxC1UJNrCzsAQiTnFdvwVtqpAqVSEBK1YkCzHfS6pghPsZOC_J6EMLO9uuHsn_SZo5GsPCF0SPCME5zebt8WMYspnGWdCMnmCxoRzlVLK1GjwmUgJleIMTWI8YEyk4HyM3p-6qi3TZai7Jvn11sS29PtkG4f7Arb2rtx3wRQVJCvfQlWVe_Bt8toFZyzE22Se3AE0yRpM8ENp3jShNvbjHJ06U0W4-NMp2j7cbxaP6fp5uVrM16mljLdpkVtgVoEShBUFhUIJ56TagXSKMlnkUDAsdznbWSmpkzsiOWRUECqkcUJkU3R9_NvPfnUQW32ou-D7SZ1RIqXkgmd9Ch9TNtQxBnC6CeWnCd-aYD0w1D1DPTDUfwz7ytWxUgLAv3hOFM9Z9gOkSm-U |
| CODEN | ITWCAX |
| Cites_doi | 10.1109/WCSP55476.2022.10039488 10.1590/S0101-82052003000100003 10.1109/TWC.2020.2970061 10.1109/JSAC.2020.3000826 10.1109/ICCT59356.2023.10419704 10.1109/GLOBECOM48099.2022.10001087 10.1109/TWC.2021.3075885 10.1109/MCOM.001.2000208 10.1109/TVT.2022.3226220 10.1109/LWC.2020.2999356 10.1109/TWC.2019.2936025 10.2140/pjm.1966.16.1 10.1109/TSP.2020.3019666 10.1109/JSAC.2021.3078502 10.1109/LWC.2020.2969167 10.1109/TVT.2023.3332107 10.1109/TSP.2020.2990098 10.1109/TCOMM.2021.3051897 10.1109/TCOMM.2021.3096933 10.1109/TVT.2022.3228794 10.1109/LWC.2022.3229441 10.1109/TCOMM.2024.3385919 10.1109/GLOCOM.2018.8647620 10.1109/TWC.2023.3336742 10.1109/TCOMM.2024.3382332 10.1109/PIMRC48278.2020.9217160 10.1109/TCOMM.2021.3104871 10.23919/JCC.2021.03.006 10.1109/TVT.2020.3031657 10.1109/TVT.2019.2958139 10.1109/TVT.2019.2923997 10.1109/MWC.011.2200356 10.1109/TWC.2020.3004330 10.1109/TCCN.2021.3128605 10.1109/LWC.2019.2961357 10.1109/MCOM.2012.6353684 10.1109/LCOMM.2020.3002557 10.1109/TVT.2021.3080302 10.1109/TWC.2020.3030882 10.1109/TWC.2022.3206773 10.1109/GLOBECOM46510.2021.9685707 10.1007/s10107-004-0552-5 10.1109/TSP.2018.2871389 10.1109/TWC.2023.3330977 10.1109/SPAWC.2019.8815412 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2025.3546747 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 5351 |
| ExternalDocumentID | 10_1109_TWC_2025_3546747 10918594 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Technologies Research and Development Program of Jiangsu (Prospective and Key Technologies for Industry) grantid: BE2023022-1; BE2023022 funderid: 10.13039/501100013068 – fundername: European Research Council (ERC) through the European Union’s Horizon 2020 Research and Innovation Program grantid: 101001331 – fundername: National Natural Science Foundation of China grantid: 62231009; 62261160576; 62471129 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2242023K5003 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-b9ce4c8e8614bb2eb86ff78de7f8247b9eb407d94dc772f7d175e3261267af663 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506724400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Mon Oct 13 15:41:10 EDT 2025 Sat Nov 29 07:54:00 EST 2025 Wed Aug 27 01:47:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-b9ce4c8e8614bb2eb86ff78de7f8247b9eb407d94dc772f7d175e3261267af663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9235-7741 0000-0001-5163-2364 0009-0002-2758-7350 0000-0001-9660-9053 0000-0002-5546-6196 0000-0003-0271-6021 |
| PQID | 3217775653 |
| PQPubID | 105736 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TWC_2025_3546747 proquest_journals_3217775653 ieee_primary_10918594 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 (ref46) 2010 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref23 doi: 10.1109/WCSP55476.2022.10039488 – ident: ref43 doi: 10.1590/S0101-82052003000100003 – ident: ref45 doi: 10.1109/TWC.2020.2970061 – ident: ref8 doi: 10.1109/JSAC.2020.3000826 – ident: ref1 doi: 10.1109/ICCT59356.2023.10419704 – ident: ref28 doi: 10.1109/GLOBECOM48099.2022.10001087 – ident: ref18 doi: 10.1109/TWC.2021.3075885 – ident: ref3 doi: 10.1109/MCOM.001.2000208 – ident: ref32 doi: 10.1109/TVT.2022.3226220 – ident: ref15 doi: 10.1109/LWC.2020.2999356 – ident: ref5 doi: 10.1109/TWC.2019.2936025 – ident: ref42 doi: 10.2140/pjm.1966.16.1 – ident: ref37 doi: 10.1109/TSP.2020.3019666 – ident: ref40 doi: 10.1109/JSAC.2021.3078502 – ident: ref12 doi: 10.1109/LWC.2020.2969167 – ident: ref6 doi: 10.1109/TVT.2023.3332107 – ident: ref27 doi: 10.1109/TSP.2020.2990098 – ident: ref9 doi: 10.1109/TCOMM.2021.3051897 – ident: ref25 doi: 10.1109/TCOMM.2021.3096933 – ident: ref39 doi: 10.1109/TVT.2022.3228794 – ident: ref19 doi: 10.1109/LWC.2022.3229441 – ident: ref22 doi: 10.1109/TCOMM.2024.3385919 – ident: ref11 doi: 10.1109/GLOCOM.2018.8647620 – ident: ref35 doi: 10.1109/TWC.2023.3336742 – ident: ref10 doi: 10.1109/TCOMM.2024.3382332 – ident: ref14 doi: 10.1109/PIMRC48278.2020.9217160 – ident: ref24 doi: 10.1109/TCOMM.2021.3104871 – ident: ref7 doi: 10.23919/JCC.2021.03.006 – volume-title: Further Advancements for E-UTRA Physical Layer Aspects (Release 9) year: 2010 ident: ref46 – ident: ref13 doi: 10.1109/TVT.2020.3031657 – ident: ref21 doi: 10.1109/TVT.2019.2958139 – ident: ref38 doi: 10.1109/TVT.2019.2923997 – ident: ref2 doi: 10.1109/MWC.011.2200356 – ident: ref17 doi: 10.1109/TWC.2020.3004330 – ident: ref34 doi: 10.1109/TCCN.2021.3128605 – ident: ref16 doi: 10.1109/LWC.2019.2961357 – ident: ref20 doi: 10.1109/MCOM.2012.6353684 – ident: ref36 doi: 10.1109/LCOMM.2020.3002557 – ident: ref26 doi: 10.1109/TVT.2021.3080302 – ident: ref29 doi: 10.1109/TWC.2020.3030882 – ident: ref30 doi: 10.1109/TWC.2022.3206773 – ident: ref31 doi: 10.1109/GLOBECOM46510.2021.9685707 – ident: ref41 doi: 10.1007/s10107-004-0552-5 – ident: ref44 doi: 10.1109/TSP.2018.2871389 – ident: ref4 doi: 10.1109/TWC.2023.3330977 – ident: ref33 doi: 10.1109/SPAWC.2019.8815412 |
| SSID | ssj0017655 |
| Score | 2.4738736 |
| Snippet | Thanks to the ability to customize the propagation of wireless signals, reconfigurable intelligent surfaces (RISs) have great potential in enhancing the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5337 |
| SubjectTerms | Algorithms Approximation algorithms Array signal processing Beamforming Channel estimation Complexity Constraints Deep learning gradient descent Imperfect CSI model-driven deep learning multicast Multicast algorithms Multicasting Optimization Parameters Performance enhancement Reconfigurable intelligent surfaces Simulation System performance Training Wireless communication Wireless communication systems |
| Title | Multi-Group Multicasting Using Reconfigurable Intelligent Surfaces: A Deep Learning Approach |
| URI | https://ieeexplore.ieee.org/document/10918594 https://www.proquest.com/docview/3217775653 |
| Volume | 24 |
| WOSCitedRecordID | wos001506724400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyIKBXlgYUgfid2z2apCBRKqkCjQASmK7XPVpa364PdjO2lVhBjYPCRRdBfnvvPd9x0hN8YIHbcyiIBLHjGdJZHKYhX56MHQGmSBPvb-DP2-GA7lS0FWD1wYRAzNZ1j3y1DLN1O98kdlDS9iKbhkJVICgJystSkZQDuMOHU72A-WgU1Nsikbg4-uywRjXk-4H64BP2JQGKry608cwkvv8J8vdkQOChxJO7njj8kOTk7I_pa64Cn5DOTaKJwu0bDW2cJ3OdPQJ0B95jmx49Fq7ulT9Gkjzrmkr6u59b1ad7RD7xFntJBhHdFOoUFeIW-9h0H3MSqGKUQ6ZnwZKamRaYHCxWOlYlSibS0Ig2BFzEBJVC63M5IZ7QC3BeNwBSZeYKwNmXW45IyUJ9MJnhOaGGGsdlCGt5CxRKiWNhKabSUZdwteJbdr86azXDMjDblGU6bOFal3RVq4okoq3pxb1-WWrJLa2iFpsasWaeLyJwAHQZOLP267JHv-6XkvV42Ul_MVXpFd_bUcL-bX4YP5BrTavqI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xkoCBZxHl6YGFIdAmdm2zVYWqFaVCokAHpCi2z1WXgvrg92M7aQVCDGweEiW6i3Pf-e77DuDCGKHjasYjziSLqM6SSGWxinz0oGgN0kAfe-nwblf0-_KxIKsHLgwihuYzvPLLUMs373rmj8quvYilYJIuwyqjNK7mdK1F0YDXwpBTt4f9aBm-qEpW5HXvteFywZhdJcyP1-A_olAYq_LrXxwCTHP7n6-2A1sFkiT13PW7sISjPdj8pi-4D2-BXhuF8yUS1jqb-D5nEjoFiM89R3Y4mI09gYq0F_KcU_I0G1vfrXVD6uQW8YMUQqwDUi9UyEvw3LzrNVpRMU4h0jFl00hJjVQLFC4iKxWjEjVruTDIrYgpVxKVy-6MpEY7yG25ccgCEy8xVuOZdcjkAFZG7yM8BJIYYax2YIZVkdJEqKo2kldqSlLmFqwMl3Pzph-5akYaso2KTJ0rUu-KtHBFGUrenN-uyy1ZhpO5Q9JiX03SxGVQnDsQmhz9cds5rLd6D5200-7eH8OGf1Le2XUCK9PxDE9hTX9Oh5PxWfh4vgDLpcHp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Group+Multicasting+Using+Reconfigurable+Intelligent+Surfaces%3A+A+Deep+Learning+Approach&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Ding%2C+Chunxia&rft.au=Jin%2C+Weijie&rft.au=Li%2C+Xiao&rft.au=Matthaiou%2C+Michail&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=24&rft.issue=10&rft.spage=5337&rft.epage=5351&rft_id=info:doi/10.1109%2FTWC.2025.3546747&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |