Decentralized Rank-Adaptive Matrix Factorization-Part I: Algorithm Development

Factorizing a low-rank matrix into two matrix factors with low dimensions from its noisy observations is a classical but challenging problem arising from real-world applications. This paper develops decentralized matrix factorization algorithms, i.e., factorizing a matrix whose columns are stored di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 73; s. 4124 - 4140
Hlavní autoři: Jiao, Yuchen, Gu, Yuantao, Chang, Tsung-Hui, Luo, Zhi-Quan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Factorizing a low-rank matrix into two matrix factors with low dimensions from its noisy observations is a classical but challenging problem arising from real-world applications. This paper develops decentralized matrix factorization algorithms, i.e., factorizing a matrix whose columns are stored distributively over a network without a central agent. The performance of existing algorithms relies heavily on the accuracy of the matrix rank estimate. However, acquiring an accurate estimate is difficult in the distributed setting. In this paper and its Part II, we address this problem by introducing a novel regularization into the objective function to induce the solution with correct rank. Based on this, we propose a rank-adaptive decentralized MF algorithm. In Part I, we delineate the algorithm development from the centralized with known rank, decentralized with known rank, to the rank-adaptive decentralized settings. For the centralized algorithm, we present the first globally linear convergence analysis for the alternating gradient descent method. In the Part II, we analyze conditions for which the proposed rank-adaptive decentralized MF algorithm converges to the global solution with the correct rank. Numerical experiments based on both synthetic and real-world datasets are presented in this paper to demonstrate the effectiveness of the proposed algorithms and corroborate the theoretical claims.
AbstractList Factorizing a low-rank matrix into two matrix factors with low dimensions from its noisy observations is a classical but challenging problem arising from real-world applications. This paper develops decentralized matrix factorization algorithms, i.e., factorizing a matrix whose columns are stored distributively over a network without a central agent. The performance of existing algorithms relies heavily on the accuracy of the matrix rank estimate. However, acquiring an accurate estimate is difficult in the distributed setting. In this paper and its Part II, we address this problem by introducing a novel regularization into the objective function to induce the solution with correct rank. Based on this, we propose a rank-adaptive decentralized MF algorithm. In Part I, we delineate the algorithm development from the centralized with known rank, decentralized with known rank, to the rank-adaptive decentralized settings. For the centralized algorithm, we present the first globally linear convergence analysis for the alternating gradient descent method. In the Part II, we analyze conditions for which the proposed rank-adaptive decentralized MF algorithm converges to the global solution with the correct rank. Numerical experiments based on both synthetic and real-world datasets are presented in this paper to demonstrate the effectiveness of the proposed algorithms and corroborate the theoretical claims.
Author Luo, Zhi-Quan
Chang, Tsung-Hui
Jiao, Yuchen
Gu, Yuantao
Author_xml – sequence: 1
  givenname: Yuchen
  orcidid: 0009-0007-4371-3341
  surname: Jiao
  fullname: Jiao, Yuchen
  email: jiaoyc201108@163.com
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Yuantao
  orcidid: 0000-0002-8427-1021
  surname: Gu
  fullname: Gu, Yuantao
  email: gyt@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Tsung-Hui
  orcidid: 0000-0003-1349-2764
  surname: Chang
  fullname: Chang, Tsung-Hui
  email: tsunghui.chang@ieee.org
  organization: The Chinese University of Hong Kong (CUHK), Shenzhen, China
– sequence: 4
  givenname: Zhi-Quan
  orcidid: 0000-0003-3995-914X
  surname: Luo
  fullname: Luo, Zhi-Quan
  email: luozq@cuhk.edu.cn
  organization: The Chinese University of Hong Kong (CUHK), Shenzhen, China
BookMark eNpNkE1PwkAQhjcGEwG9e_DQxHNx9rv1RkCUBJUoJt4223aqxdLidiHKr7cEDp5mMnned5KnRzpVXSEhlxQGlEJ8s3idDxgwMeBCSYD4hHRpLGgIQqtOu4PkoYz0-xnpNc0SgAoRqy55GmOKlXe2LHaYBS-2-gqHmV37YovBo_Wu-AkmNvW1K3bWF3UVzq3zwfQ2GJYf7dF_roIxbrGs16u255yc5rZs8OI4--RtcrcYPYSz5_vpaDgLUyakDxOW8EgrpCDySDMOUcaSKFUyVllOFc1jTXkskEUUM51m2iaQQcK4VhpQSt4n14fetau_N9h4s6w3rmpfGs40pVpTyVoKDlTq6qZxmJu1K1bW_RoKZm_NtNbM3po5WmsjV4dIgYj_cA1SMMb_AB7caYo
CODEN ITPRED
Cites_doi 10.1145/3584862
10.1109/TSP.2008.917356
10.1007/s10589-021-00328-w
10.1561/2400000003
10.1109/TNNLS.2018.2851957
10.1093/imaiai/iay003
10.3390/app122111118
10.1109/TNNLS.2016.2597444
10.1109/tsp.2022.3151505
10.1109/TASSP.1985.1164557
10.1016/j.patcog.2023.109637
10.1109/TSP.2013.2279080
10.1109/TIT.2016.2598574
10.1007/s10107-018-1285-1
10.1109/5.726791
10.1145/2488608.2488693
10.1109/ICACC.2015.82
10.3934/ipi.2015.9.601
10.1093/imanum/drz061
10.1109/ICASSP.2002.5743991
10.1109/TIP.2017.2762595
10.1109/ICASSP.2017.7952998
10.1137/S0036144503423264
10.1109/TSP.2018.2870353
10.1109/ICASSP.2012.6288528
10.1109/TSP.2024.3465049
10.1109/TIT.2021.3049171
10.1016/0024-3795(92)90407-2
10.1137/14096668X
10.1016/j.neucom.2012.12.055
10.1109/SAMPTA.2015.7148925
10.1109/TSP.2015.2472372
10.1109/LSP.2020.2988596
10.1109/TSP.2012.2232661
10.1017/cbo9780511794308.006
10.1109/TNNLS.2017.2766160
10.1016/0169-7439(87)80084-9
10.1109/TrustCom60117.2023.00148
10.21037/atm.2017.07.12
10.1109/TIT.2010.2046205
10.1109/TBDATA.2022.3163584
10.1109/ICASSP.2016.7472577
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2024.3465009
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 4140
ExternalDocumentID 10_1109_TSP_2024_3465009
10705422
Genre orig-research
GrantInformation_xml – fundername: Shenzhen Science and Technology Program
  grantid: ZDSYS20230626091302006; RCJC20210609104448114
– fundername: NSAF
  grantid: U2230201
– fundername: Guangdong Provincial Key Laboratory of Big Data Computing
– fundername: NSFC, China
  grantid: 62071409; 62301037
  funderid: 10.13039/501100001809
– fundername: BNRist Youth Innovation Fund
  grantid: BNR2024RC01001
– fundername: GuoQiang Institute, Tsinghua University
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-b2b3876e104f872308d2b8c6596df161f971394e281ed7cd7ab0d0b237670e553
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615304500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Thu Nov 13 06:21:57 EST 2025
Sat Nov 29 06:45:42 EST 2025
Wed Nov 19 08:27:18 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-b2b3876e104f872308d2b8c6596df161f971394e281ed7cd7ab0d0b237670e553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-4371-3341
0000-0003-3995-914X
0000-0002-8427-1021
0000-0003-1349-2764
PQID 3271177152
PQPubID 85478
PageCount 17
ParticipantIDs proquest_journals_3271177152
crossref_primary_10_1109_TSP_2024_3465009
ieee_primary_10705422
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
Li (ref30) 2017
Tu (ref35) 2016
ref19
ref18
Balsubramani (ref22) 2013
ref51
ref50
Ge (ref37) 2016
ref46
ref45
Ge (ref44) 2015
ref47
ref42
ref41
Bhojanapalli (ref39) 2016
ref49
ref8
Zhu (ref7) 2019
ref9
ref4
ref3
ref6
ref5
ref40
Saade (ref24) 2015
ref36
ref31
ref33
ref32
ref1
Zheng (ref34) 2015
Pei (ref2) 2010; 2
Ye (ref48) 2021; 22
Lee (ref43) 2016
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
Ge (ref38) 2017
References_xml – ident: ref4
  doi: 10.1145/3584862
– ident: ref16
  doi: 10.1109/TSP.2008.917356
– ident: ref27
  doi: 10.1007/s10589-021-00328-w
– ident: ref51
  doi: 10.1561/2400000003
– ident: ref28
  doi: 10.1109/TNNLS.2018.2851957
– ident: ref40
  doi: 10.1093/imaiai/iay003
– volume-title: Proc. NeurIPS
  year: 2016
  ident: ref39
  article-title: Global optimality of local search for low rank matrix recovery
– ident: ref12
  doi: 10.3390/app122111118
– ident: ref15
  doi: 10.1109/TNNLS.2016.2597444
– ident: ref3
  doi: 10.1109/tsp.2022.3151505
– start-page: 1
  volume-title: Proc. NeurIPS
  year: 2015
  ident: ref24
  article-title: Matrix completion from fewer entries: Spectral detectability and rank estimation
– ident: ref18
  doi: 10.1109/TASSP.1985.1164557
– ident: ref21
  doi: 10.1016/j.patcog.2023.109637
– start-page: 1233
  volume-title: Proc. ICML
  year: 2017
  ident: ref38
  article-title: No spurious local minima in nonconvex low rank problems: A unified geometric analysis
– ident: ref14
  doi: 10.1109/TSP.2013.2279080
– ident: ref29
  doi: 10.1109/TIT.2016.2598574
– ident: ref50
  doi: 10.1007/s10107-018-1285-1
– volume: 22
  start-page: 1
  issue: 1
  year: 2021
  ident: ref48
  article-title: DeEPCA: Decentralized exact PCA with linear convergence rate
  publication-title: J. Mach. Learn. Res
– ident: ref55
  doi: 10.1109/5.726791
– start-page: 1
  volume-title: Proc. NeurIPS
  year: 2016
  ident: ref37
  article-title: Matrix completion has no spurious local minimum
– ident: ref33
  doi: 10.1145/2488608.2488693
– start-page: 1
  volume-title: Proc. NeurIPS
  year: 2019
  ident: ref7
  article-title: Distributed low-rank matrix factorization with exact consensus
– ident: ref1
  doi: 10.1109/ICACC.2015.82
– year: 2017
  ident: ref30
  article-title: Geometry of factored nuclear norm regularization
– start-page: 1246
  volume-title: Proc. COLT
  year: 2016
  ident: ref43
  article-title: Gradient descent only converges to minimizers
– ident: ref26
  doi: 10.3934/ipi.2015.9.601
– ident: ref41
  doi: 10.1093/imanum/drz061
– ident: ref45
  doi: 10.1109/ICASSP.2002.5743991
– ident: ref25
  doi: 10.1109/TIP.2017.2762595
– ident: ref47
  doi: 10.1109/ICASSP.2017.7952998
– ident: ref54
  doi: 10.1137/S0036144503423264
– ident: ref36
  doi: 10.1109/TSP.2018.2870353
– ident: ref13
  doi: 10.1109/ICASSP.2012.6288528
– ident: ref19
  doi: 10.1109/TSP.2024.3465049
– ident: ref42
  doi: 10.1109/TIT.2021.3049171
– ident: ref49
  doi: 10.1016/0024-3795(92)90407-2
– start-page: 797
  volume-title: Proc. COLT
  year: 2015
  ident: ref44
  article-title: Escaping from saddle points: Online stochastic gradient for tensor decomposition
– ident: ref53
  doi: 10.1137/14096668X
– ident: ref8
  doi: 10.1016/j.neucom.2012.12.055
– start-page: 964
  volume-title: Proc. ICML
  year: 2016
  ident: ref35
  article-title: Low-rank solutions of linear matrix equations via procrustes flow
– ident: ref32
  doi: 10.1109/SAMPTA.2015.7148925
– ident: ref46
  doi: 10.1109/TSP.2015.2472372
– ident: ref31
  doi: 10.1109/LSP.2020.2988596
– ident: ref17
  doi: 10.1109/TSP.2012.2232661
– start-page: 1
  volume-title: Proc. NeurIPS
  year: 2013
  ident: ref22
  article-title: The fast convergence of incremental PCA
– ident: ref52
  doi: 10.1017/cbo9780511794308.006
– ident: ref20
  doi: 10.1109/TNNLS.2017.2766160
– ident: ref6
  doi: 10.1016/0169-7439(87)80084-9
– start-page: 1
  volume-title: Proc. NeurIPS
  year: 2015
  ident: ref34
  article-title: A convergent gradient descent algorithm for rank minimization and semidefinite programming from random linear measurements
– volume: 2
  start-page: 281
  volume-title: Proc. Int. Conf. Intell. Comput. Technol. Automat.
  year: 2010
  ident: ref2
  article-title: Extended semi-supervised matrix factorization for clustering
– ident: ref10
  doi: 10.1109/TrustCom60117.2023.00148
– ident: ref11
  doi: 10.21037/atm.2017.07.12
– ident: ref23
  doi: 10.1109/TIT.2010.2046205
– ident: ref5
  doi: 10.1109/TBDATA.2022.3163584
– ident: ref9
  doi: 10.1109/ICASSP.2016.7472577
SSID ssj0014496
Score 2.4729888
Snippet Factorizing a low-rank matrix into two matrix factors with low dimensions from its noisy observations is a classical but challenging problem arising from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4124
SubjectTerms Accuracy
Adaptive algorithms
Algorithms
Convergence
decentralized
Factorization
Image reconstruction
Linear programming
Low rank
Matrix decomposition
matrix factorization
Noise
Principal component analysis
rank adaptive
Regularization
Reviews
Signal processing algorithms
Sparse matrices
Title Decentralized Rank-Adaptive Matrix Factorization-Part I: Algorithm Development
URI https://ieeexplore.ieee.org/document/10705422
https://www.proquest.com/docview/3271177152
Volume 73
WOSCitedRecordID wos001615304500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl48ZBZk7ZJvA116MExdMJuJU1SHWo3tk7Ev96XtJOCePBWSgPlvbyX38v7-CF0aqmOtdCaGKMlCQ0zRKpMEBYZoS6YVVGWerIJ3u-L0UgOqmZ13wtjrfXFZ7bjHn0u30z0wl2VgYVzQBgUPO4q53HZrPWTMghDT8YFeIGRSPDRMicZyPPh4wAiQRp2WAiAxNUe1s4gT6ryyxP746W39c8f20abFY7E3VLxO2jF5rtoozZdcA_1r21Vejn-sgY_qPyVdI2aOgeH791o_k_c83Q7VS8mGcA-wneXuPv2DC-Ll3dcqylqoqfezfDqllT0CUTTMCpISlMGvs5CwJUJDqGGMDQVOo5kbDIAepmEAFWGlooLa7g2XKWBCVJXJsMDG0VsHzXySW4PEE4BmAnDFIVoDRCXUKDg2Nl7YDJHpthCZ0uBJtNySkbio4tAJiD8xAk_qYTfQk0nwNp3pexaqL1UQVLZ0TxhlLusMoCMwz-WHaF16ih5_a1IGzWK2cIeozX9UYznsxO_Rb4BNi649w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-ignrwc-J0ag9ePGR2Sdqm3oY6NtzK0Am7hTZJdajd2DoR_3pfsk4K4sFbKQ2U9_Jefi_v44fQhSbSl1xKrJQMMVNU4TBOOaae4nGD6thLE0s2EUQRHw7DftGsbnthtNa2-EzXzaPN5auxnJurMrDwABAGAY-75jFG3EW71k_SgDFLxwWIgWKPB8NlVtINrwaPfYgFCatTBpDEVB-WTiFLq_LLF9sDprXzz1_bRdsFknSaC9XvoRWd7aOt0nzBAxTd6qL4cvSllfMQZ6-4qeKJcXFOzwzn_3RalnCn6MbEfdhJTufaab49w8v85d0pVRVV0FPrbnDTxgWBApaEeTlOSELB22kIuVIeQLDBFUm49L3QVylAvTSEEDVkmvCGVoFUQZy4yk1MoUzgas-jh2g1G2f6CDkJQDOuaEwgXgPMxWNQsW8s3lWpoVOsosulQMVkMSdD2PjCDQUIXxjhi0L4VVQxAix9t5BdFdWWKhCFJc0EJYHJKwPMOP5j2TnaaA96XdHtRPcnaJMYgl57R1JDq_l0rk_RuvzIR7Ppmd0u3wYBvD4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+Rank-Adaptive+Matrix+Factorization%E2%80%94Part+I%3A+Algorithm+Development&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Jiao%2C+Yuchen&rft.au=Gu%2C+Yuantao&rft.au=Chang%2C+Tsung-Hui&rft.au=Luo%2C+Zhi-Quan&rft.date=2025&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=73&rft.spage=4124&rft.epage=4140&rft_id=info:doi/10.1109%2FTSP.2024.3465009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2024_3465009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon