Emotion Recognition Empowered Human-Computer Interaction With Domain Adaptation Network

Multi-modal emotion recognition plays a vital role in the human-computer interaction (HCI) for consumer electronics. Nowadays, many studies have developed multi-modal fusion algorithms for this purpose. However, two challenging issues remain unsolved, i.e., inefficient multi-modal feature fusion and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics Vol. 71; no. 2; pp. 6777 - 6786
Main Authors: Xu, Xu, Fu, Chong, Chen, Junxin
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0098-3063, 1558-4127
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-modal emotion recognition plays a vital role in the human-computer interaction (HCI) for consumer electronics. Nowadays, many studies have developed multi-modal fusion algorithms for this purpose. However, two challenging issues remain unsolved, i.e., inefficient multi-modal feature fusion and unclear distance in feature space. To this end, we develop a novel framework, namely LAFDA-Net, for cross-subject emotion recognition using EEG and eye movement signals. It is based on low-rank fusion and domain adaptation network. More specifically, the multi-modal signals are input into the feature extraction branch in parallel to generate features. Then, these features are fused by the low-rank fusion branch, reducing complexity and avoiding overfitting. Next, the fused features are flattened and sent to the classification branch to determine the emotion status. During training, these features are input into the domain adaptive branch to bridge the gap between the source domain and target domain. Three benchmark datasets, i.e., SEED, SEED-IV, and SEED-V, are employed for performance validation. Extensive results demonstrate that the proposed LAFDA-Net is robust, effective, and has advantages over peer methods.
AbstractList Multi-modal emotion recognition plays a vital role in the human-computer interaction (HCI) for consumer electronics. Nowadays, many studies have developed multi-modal fusion algorithms for this purpose. However, two challenging issues remain unsolved, i.e., inefficient multi-modal feature fusion and unclear distance in feature space. To this end, we develop a novel framework, namely LAFDA-Net, for cross-subject emotion recognition using EEG and eye movement signals. It is based on low-rank fusion and domain adaptation network. More specifically, the multi-modal signals are input into the feature extraction branch in parallel to generate features. Then, these features are fused by the low-rank fusion branch, reducing complexity and avoiding overfitting. Next, the fused features are flattened and sent to the classification branch to determine the emotion status. During training, these features are input into the domain adaptive branch to bridge the gap between the source domain and target domain. Three benchmark datasets, i.e., SEED, SEED-IV, and SEED-V, are employed for performance validation. Extensive results demonstrate that the proposed LAFDA-Net is robust, effective, and has advantages over peer methods.
Author Xu, Xu
Chen, Junxin
Fu, Chong
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0002-3934-9096
  surname: Xu
  fullname: Xu, Xu
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Chong
  orcidid: 0000-0002-4549-744X
  surname: Fu
  fullname: Fu, Chong
  email: fuchong@mail.neu.edu.cn
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Junxin
  orcidid: 0000-0003-4745-8361
  surname: Chen
  fullname: Chen, Junxin
  organization: School of Software, Dalian University of Technology, Dalian, China
BookMark eNpNkE1Lw0AQhhepYFu9e_AQ8Jw6-5nsscRoC0VBKj0um-1GU81u3CQU_73px8HLzDA87ww8EzRy3lmEbjHMMAb5sM7yGQHCZpQTxgBfoDHmPI0ZJskIjQFkGlMQ9ApN2nYHgBkn6Rht8tp3lXfRmzX-w1XHOa8bv7fBbqNFX2sXZ75u-s6GaOmGqs0R2lTdZ_Toa125aL7VTaeP6xfb7X34ukaXpf5u7c25T9H7U77OFvHq9XmZzVexIYx3sTYpJAnmmgtGuLRUC1HKgptSCkMNpRQklIaXXBYkEQVoXLBCpFAWguBU0im6P91tgv_pbdupne-DG14qSlhCuRScDRScKBN82wZbqiZUtQ6_CoM66FODPnXQp876hsjdKVJZa__hKZaDPPoHwyNtDw
CODEN ITCEDA
Cites_doi 10.1109/jbhi.2024.3422472
10.1007/s10489-023-05097-z
10.1109/TAFFC.2024.3392791
10.1145/3581783.3613797
10.1088/1741-2552/ac49a7
10.1016/j.inffus.2022.09.012
10.1016/j.eswa.2024.124001
10.1109/CVPR.2018.00745
10.1109/T-AFFC.2011.15
10.1109/TAI.2023.3347178
10.1109/TCE.2023.3325317
10.1109/JAS.2022.105515
10.1109/TAMD.2015.2431497
10.1109/TCYB.2018.2797176
10.1007/978-3-319-58347-1_10
10.7717/peerj-cs.1977
10.1109/TCDS.2021.3071170
10.1109/BIBM58861.2023.10385505
10.1016/j.asoc.2021.107752
10.18653/v1/P18-1209
10.1016/j.eswa.2020.114088
10.1109/TCE.2021.3056421
10.1109/TCE.2024.3351190
10.1016/j.inffus.2023.102129
10.1016/j.knosys.2021.107982
10.1109/JBHI.2017.2688239
10.48550/ARXIV.1807.06521
10.1109/TCBB.2022.3140306
10.1109/TCSS.2023.3298324
10.1088/1741-2552/ac5c8d
10.1007/s13042-023-01964-w
10.1109/TCE.2023.3263672
10.1007/s12559-024-10327-8
10.1109/TII.2021.3088465
10.1109/TCBB.2023.3247433
10.1016/j.compbiomed.2023.107450
10.1109/ICASSP48485.2024.10446937
10.1109/TAFFC.2024.3357656
10.1109/TPAMI.2023.3268209
10.1109/TAFFC.2021.3134183
10.1109/TII.2022.3217120
10.1016/j.bspc.2022.103687
10.1016/j.inffus.2021.07.007
10.1109/tetci.2024.3406422
10.1109/TCE.2023.3325335
10.1109/TAFFC.2022.3189222
10.1109/TCDS.2019.2949306
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2024.3524401
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 6786
ExternalDocumentID 10_1109_TCE_2024_3524401
10819001
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: N2424010-18; DUT22RC(3)099
  funderid: 10.13039/501100012226
– fundername: Liaoning Provincial Science and Technology Plan Project
  grantid: 2023JH2/101700370
– fundername: Xiaomi Young Talents Program
– fundername: National Natural Science Foundation of China
  grantid: 62171114
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c245t-ac807715a564259e3a66f9b5cf96c3c333090fc5f59b276b0a1b4b680fb621893
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554477900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3063
IngestDate Thu Nov 27 15:43:10 EST 2025
Sat Nov 29 07:39:14 EST 2025
Wed Aug 27 07:36:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-ac807715a564259e3a66f9b5cf96c3c333090fc5f59b276b0a1b4b680fb621893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4745-8361
0000-0002-4549-744X
0000-0002-3934-9096
PQID 3247359654
PQPubID 85469
PageCount 10
ParticipantIDs ieee_primary_10819001
proquest_journals_3247359654
crossref_primary_10_1109_TCE_2024_3524401
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Wang (ref44) 2018
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref34
  doi: 10.1109/jbhi.2024.3422472
– ident: ref32
  doi: 10.1007/s10489-023-05097-z
– ident: ref29
  doi: 10.1109/TAFFC.2024.3392791
– ident: ref16
  doi: 10.1145/3581783.3613797
– ident: ref11
  doi: 10.1088/1741-2552/ac49a7
– ident: ref31
  doi: 10.1016/j.inffus.2022.09.012
– ident: ref14
  doi: 10.1016/j.eswa.2024.124001
– ident: ref43
  doi: 10.1109/CVPR.2018.00745
– ident: ref19
  doi: 10.1109/T-AFFC.2011.15
– ident: ref46
  doi: 10.1109/TAI.2023.3347178
– ident: ref1
  doi: 10.1109/TCE.2023.3325317
– ident: ref12
  doi: 10.1109/JAS.2022.105515
– ident: ref17
  doi: 10.1109/TAMD.2015.2431497
– ident: ref18
  doi: 10.1109/TCYB.2018.2797176
– ident: ref35
  doi: 10.1007/978-3-319-58347-1_10
– ident: ref28
  doi: 10.7717/peerj-cs.1977
– ident: ref9
  doi: 10.1109/TCDS.2021.3071170
– ident: ref24
  doi: 10.1109/BIBM58861.2023.10385505
– ident: ref21
  doi: 10.1016/j.asoc.2021.107752
– ident: ref33
  doi: 10.18653/v1/P18-1209
– ident: ref37
  doi: 10.1016/j.eswa.2020.114088
– ident: ref2
  doi: 10.1109/TCE.2021.3056421
– ident: ref4
  doi: 10.1109/TCE.2024.3351190
– ident: ref42
  doi: 10.1016/j.inffus.2023.102129
– ident: ref41
  doi: 10.1016/j.knosys.2021.107982
– ident: ref20
  doi: 10.1109/JBHI.2017.2688239
– ident: ref45
  doi: 10.48550/ARXIV.1807.06521
– year: 2018
  ident: ref44
  article-title: Parameter-free spatial attention network for person re-identification
  publication-title: arXiv:1811.12150
– ident: ref47
  doi: 10.1109/TCBB.2022.3140306
– ident: ref22
  doi: 10.1109/TCSS.2023.3298324
– ident: ref23
  doi: 10.1088/1741-2552/ac5c8d
– ident: ref27
  doi: 10.1007/s13042-023-01964-w
– ident: ref6
  doi: 10.1109/TCE.2023.3263672
– ident: ref7
  doi: 10.1007/s12559-024-10327-8
– ident: ref48
  doi: 10.1109/TII.2021.3088465
– ident: ref15
  doi: 10.1109/TCBB.2023.3247433
– ident: ref5
  doi: 10.1016/j.compbiomed.2023.107450
– ident: ref25
  doi: 10.1109/ICASSP48485.2024.10446937
– ident: ref13
  doi: 10.1109/TAFFC.2024.3357656
– ident: ref30
  doi: 10.1109/TPAMI.2023.3268209
– ident: ref3
  doi: 10.1109/TAFFC.2021.3134183
– ident: ref39
  doi: 10.1109/TII.2022.3217120
– ident: ref38
  doi: 10.1016/j.bspc.2022.103687
– ident: ref10
  doi: 10.1016/j.inffus.2021.07.007
– ident: ref26
  doi: 10.1109/tetci.2024.3406422
– ident: ref8
  doi: 10.1109/TCE.2023.3325335
– ident: ref40
  doi: 10.1109/TAFFC.2022.3189222
– ident: ref36
  doi: 10.1109/TCDS.2019.2949306
SSID ssj0014528
Score 2.4335718
Snippet Multi-modal emotion recognition plays a vital role in the human-computer interaction (HCI) for consumer electronics. Nowadays, many studies have developed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6777
SubjectTerms Adaptation
Adaptation models
Brain modeling
Complexity theory
Consumer electronics
Data models
deep learning
domain adaptation
Electroencephalography
Emotion recognition
Emotions
Eye movements
Feature extraction
Human-computer interaction
Human-computer interface
low-rank fusion
multi-modal
Physiology
Robustness
Training
Title Emotion Recognition Empowered Human-Computer Interaction With Domain Adaptation Network
URI https://ieeexplore.ieee.org/document/10819001
https://www.proquest.com/docview/3247359654
Volume 71
WOSCitedRecordID wos001554477900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgYoCBZxGFgjywMKQ48Sseq5KKqUKoqN0i23FEh6ZVm_L9-JGgSoiBzUMiRffEvuf6Pg4Aj8jw2Li6sEQVMiKcxpF1CyqSBdXWw0iFZOnFJvhkks7n4q1pVve9MMYYX3xmBm7pc_nFSu_cVZnd4c5_uW6tQ85ZaNb6SRkQmqTtgEzLg3Gbk0TieTrKbCSYkIFlG4Q0-i-tD_KiKr9OYu9exmf__LBzcNrwSDgMwF-AA1NdgpO96YJXYJYFiR743hYJ2XW2XDtdNFNAf30ftaoO0F8Nhi4HOFvUn_BltZSLCg4LuQ7pejgJJeNd8DHOpqPXqNFRiHRCaB1JnSLOreGpDTaoMFgyVgpFdSmYxhpjjAQqNS2pUAlnFp5YEcVSVCpmGYDA16BTrSpzA6DBuCiN4kQKxwWFiqmWCBc0VZarKdoDT61l83UYl5H7MAOJ3KKQOxTyBoUe6DpL7j0XjNgD_RaLvNlQ29zyPo6pYJTc_vHaHThOnDavL0bsg0692Zl7cKS_6sV28-D_lW-3Rbw0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA4yBfXg58Tp1By8eOhMm6RpjmN2TJxFZLLdSpKmuMM-2Dp_v0naykA8eMuhhfI-Td7nzfvxAHCPNPO1rQsLZCY8wqjvGbcgPZFRZTyMkEjkTmyCJUk0mfC3qlnd9cJorV3xme7YpcvlZwu1sVdlZodb_2W7tXYpIQEq27V-kgaEBlE9ItMwYVxnJRF_HPViEwsGpGP4BiGVAkzthZysyq-z2DmY_vE_P-0EHFVMEnZL6E_Bjp6fgcOt-YLnYByXIj3wvS4TMut4trTKaDqD7gLfq3UdoLscLPsc4HhafMKnxUxM57CbiWWZsIdJWTTeBB_9eNQbeJWSgqcCQgtPqAgxZkxPTbhBucYiDHMuqcp5qLDCGCOOckVzymXAQgOQL4kMI5TL0HAAji9AY76Y60sANcZZriUjgls2yKVPlUA4o5E0bE3SFnioLZsuy4EZqQs0EE8NCqlFIa1QaIGmteTWc6URW6BdY5FWW2qdGubHMOUhJVd_vHYH9gej12E6fE5ersFBYJV6XWliGzSK1UbfgD31VUzXq1v333wDrv2_ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+Empowered+Human-Computer+Interaction+With+Domain+Adaptation+Network&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Xu%2C+Xu&rft.au=Fu%2C+Chong&rft.au=Chen%2C+Junxin&rft.date=2025-05-01&rft.pub=IEEE&rft.issn=0098-3063&rft.volume=71&rft.issue=2&rft.spage=6777&rft.epage=6786&rft_id=info:doi/10.1109%2FTCE.2024.3524401&rft.externalDocID=10819001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon