Cover Trees Revisited: Exploiting Unused Distance and Direction Information

The cover tree (CT) and its improved version are hierarchical data structures that simplified navigating nets while maintaining good runtime guarantees. They can perform nearest neighbor search in logarithmic time and provide efficient computation in practice. In this paper, we revisit cover trees f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 35; číslo 11; s. 1 - 16
Hlavní autoři: Wang, Zhi-Jie, Nie, Mengdie, Zhao, Kaiqi, Quan, Zhe, Yao, Bin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The cover tree (CT) and its improved version are hierarchical data structures that simplified navigating nets while maintaining good runtime guarantees. They can perform nearest neighbor search in logarithmic time and provide efficient computation in practice. In this paper, we revisit cover trees for nearest neighbor search, and propose a more competitive method. The central idea of our method is to fully exploit the unused distance and direction information. More specially, our method introduces three novel concepts/techniques: (I) range list, (II) quadrant information, and (III) vectorial angle cosine. These techniques are seamlessly integrated into our suggested data structure and search algorithms. As an extra bonus, we explore approximate nearest neighbor and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> nearest neighbor based on the proposed techniques, and present algorithms for handling updates. Extensive experimental results, based on both real and synthetic datasets, consistently demonstrate that our method is attractive and competitive, compared against existing cover tree structures for nearest neighbor search and its variants.
AbstractList The cover tree (CT) and its improved version are hierarchical data structures that simplified navigating nets while maintaining good runtime guarantees. They can perform nearest neighbor search in logarithmic time and provide efficient computation in practice. In this paper, we revisit cover trees for nearest neighbor search, and propose a more competitive method. The central idea of our method is to fully exploit the unused distance and direction information. More specially, our method introduces three novel concepts/techniques: (I) range list, (II) quadrant information, and (III) vectorial angle cosine. These techniques are seamlessly integrated into our suggested data structure and search algorithms. As an extra bonus, we explore approximate nearest neighbor and <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> nearest neighbor based on the proposed techniques, and present algorithms for handling updates. Extensive experimental results, based on both real and synthetic datasets, consistently demonstrate that our method is attractive and competitive, compared against existing cover tree structures for nearest neighbor search and its variants.
The cover tree (CT) and its improved version are hierarchical data structures that simplified navigating nets while maintaining good runtime guarantees. They can perform nearest neighbor search in logarithmic time and provide efficient computation in practice. In this article, we revisit cover trees for nearest neighbor search, and propose a more competitive method. The central idea of our method is to fully exploit the unused distance and direction information. More specially, our method introduces three novel concepts/techniques: (i) range list, (ii) quadrant information, and (iii) vectorial angle cosine. These techniques are seamlessly integrated into our suggested data structure and search algorithms. As an extra bonus, we explore approximate nearest neighbor and [Formula Omitted] nearest neighbor based on the proposed techniques, and present algorithms for handling updates. Extensive experimental results, based on both real and synthetic datasets, consistently demonstrate that our method is attractive and competitive, compared against existing cover tree structures for nearest neighbor search and its variants.
Author Zhao, Kaiqi
Wang, Zhi-Jie
Quan, Zhe
Nie, Mengdie
Yao, Bin
Author_xml – sequence: 1
  givenname: Zhi-Jie
  orcidid: 0000-0002-6865-7899
  surname: Wang
  fullname: Wang, Zhi-Jie
  organization: College of Computer Science, Chongqing University, China
– sequence: 2
  givenname: Mengdie
  surname: Nie
  fullname: Nie, Mengdie
  organization: Pinduoduo Company
– sequence: 3
  givenname: Kaiqi
  orcidid: 0000-0002-0984-1629
  surname: Zhao
  fullname: Zhao, Kaiqi
  organization: Department of Computer Science, University of Auckland, New Zealand
– sequence: 4
  givenname: Zhe
  orcidid: 0000-0003-2669-9190
  surname: Quan
  fullname: Quan, Zhe
  organization: College of Computer Science, Hunan University, Changsha, China
– sequence: 5
  givenname: Bin
  orcidid: 0000-0002-6478-4209
  surname: Yao
  fullname: Yao, Bin
  organization: Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China
BookMark eNo9kE1rAjEQhkOxULX9AaWXhZ7XZvKhSW9FbSsKhaLnkM3OlohmbbJK---7i9LTvAPPfPAMSC_UAQm5BzoCoPppvZzNR4wyNuKMw0TBFemDlCpnoKHXZiogF1xMbsggpS2lVLVQnyyn9Qljto6IKfvEk0--wfI5m_8cdrVvfPjKNuGYsMxmPjU2OMxs6JqIrvF1yBahquPedvmWXFd2l_DuUodk8zpfT9_z1cfbYvqyyh0Tssktx4qCYq4aF6Bp-58WlRBlwbiTtpJASy7ZuCzR0YmrCuBjKDgTVjoqSqX5kDye9x5i_X3E1JhtfYyhPWmYmnCpJHDVUnCmXKxTiliZQ_R7G38NUNM5M50z0zkzF2ftzMN5xiPiP6-1VsAk_wMEhGki
CODEN ITKEEH
Cites_doi 10.1109/ICDE.2017.22
10.1109/ICDE.2017.29
10.1145/2882903.2882930
10.1145/3292500.3330929
10.1609/aaai.v32i1.11276
10.1109/TPAMI.2017.2699960
10.1016/0020-0190(91)90074-R
10.1109/TKDE.2019.2909204
10.1145/509907.510013
10.1145/3340531.3412163
10.1109/TPAMI.2018.2889473
10.1145/2699499
10.1109/ICDE.2018.00074
10.1145/355744.355745
10.1109/ICDE.2017.47
10.1109/ACCESS.2020.2972034
10.1007/PL00009449
10.1109/MLSP.2017.8168167
10.14778/3067421.3067426
10.1109/TKDE.2019.2953897
10.1145/1143844.1143857
10.1109/TPAMI.2019.2925347
10.1145/3097983.3097987
10.1109/TPAMI.2019.2907086
10.1109/ICDE48307.2020.00094
10.1145/3397271.3401084
10.1109/TMM.2017.2699863
10.1109/TCYB.2018.2836804
10.1016/j.knosys.2019.06.032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3231781
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 16
ExternalDocumentID 10_1109_TKDE_2022_3231781
9998125
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
AARMG
ABAZT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-a3ef0182cf6b19019194f44db23c5af510d3526ddec07cfb1361b324a5c04d893
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001089176900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 06:44:43 EDT 2025
Sat Nov 29 02:36:06 EST 2025
Tue Nov 25 14:44:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-a3ef0182cf6b19019194f44db23c5af510d3526ddec07cfb1361b324a5c04d893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6865-7899
0000-0002-6478-4209
0000-0003-2669-9190
0000-0002-0984-1629
PQID 2873585138
PQPubID 85438
PageCount 16
ParticipantIDs proquest_journals_2873585138
crossref_primary_10_1109_TKDE_2022_3231781
ieee_primary_9998125
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
zaheer (ref37) 2017
ref14
ref36
ref31
ref30
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
segata (ref28) 2010; 11
prokhorenkova (ref27) 2020
ge (ref11) 2020
davitkova (ref8) 2020
ref24
tziortziotis (ref33) 2014; 15
ref26
ref25
ref22
ref21
izbicki (ref18) 2015
ref29
ref7
ref9
lisitsyn (ref23) 2013; 14
ref4
ref3
ref6
ref5
he (ref15) 2012
gray (ref13) 2000
ref40
krauthgamer (ref20) 2004
References_xml – ident: ref14
  doi: 10.1109/ICDE.2017.22
– start-page: 1162
  year: 2015
  ident: ref18
  article-title: Faster cover trees
  publication-title: Proc Int Conf Mach Learn
– ident: ref32
  doi: 10.1109/ICDE.2017.29
– ident: ref39
  doi: 10.1145/2882903.2882930
– ident: ref26
  doi: 10.1145/3292500.3330929
– ident: ref30
  doi: 10.1609/aaai.v32i1.11276
– ident: ref35
  doi: 10.1109/TPAMI.2017.2699960
– ident: ref34
  doi: 10.1016/0020-0190(91)90074-R
– ident: ref22
  doi: 10.1109/TKDE.2019.2909204
– volume: 14
  start-page: 2355
  year: 2013
  ident: ref23
  article-title: Tapkee: An efficient dimension reduction library
  publication-title: J Mach Learn Res
– start-page: 407
  year: 2020
  ident: ref8
  article-title: The ML-index: A multidimensional, learned index for point, range, and nearest-neighbor queries
  publication-title: Proc Int Conf Extending Database Technol
– start-page: 3977
  year: 2017
  ident: ref37
  article-title: Canopy fast sampling with cover trees
  publication-title: Proc Int Conf Mach Learn
– ident: ref19
  doi: 10.1145/509907.510013
– ident: ref40
  doi: 10.1145/3340531.3412163
– start-page: 335
  year: 2020
  ident: ref11
  article-title: Efficient PrefDiv algorithms for effective top-k result diversification
  publication-title: Proc Int Conf Extending Database Technol
– ident: ref25
  doi: 10.1109/TPAMI.2018.2889473
– ident: ref9
  doi: 10.1145/2699499
– ident: ref36
  doi: 10.1109/ICDE.2018.00074
– volume: 15
  start-page: 2313
  year: 2014
  ident: ref33
  article-title: Cover tree Bayesian reinforcement learning
  publication-title: J Mach Learn Res
– start-page: 7803
  year: 2020
  ident: ref27
  article-title: Graph-based nearest neighbor search: From practice to theory
  publication-title: Proc 37th Int Conf Mach Learn
– ident: ref10
  doi: 10.1145/355744.355745
– ident: ref17
  doi: 10.1109/ICDE.2017.47
– ident: ref21
  doi: 10.1109/ACCESS.2020.2972034
– ident: ref7
  doi: 10.1007/PL00009449
– start-page: 798
  year: 2004
  ident: ref20
  article-title: Navigating nets: Simple algorithms for proximity search
  publication-title: Proc 15th Annu ACM-SIAM Symp Discrete Algorithms
– ident: ref12
  doi: 10.1109/MLSP.2017.8168167
– ident: ref3
  doi: 10.14778/3067421.3067426
– ident: ref2
  doi: 10.1109/TKDE.2019.2953897
– volume: 11
  start-page: 1883
  year: 2010
  ident: ref28
  article-title: Fast and scalable local kernel machines
  publication-title: J Mach Learn Res
– ident: ref1
  doi: 10.1145/1143844.1143857
– ident: ref16
  doi: 10.1109/TPAMI.2019.2925347
– ident: ref31
  doi: 10.1145/3097983.3097987
– ident: ref6
  doi: 10.1109/TPAMI.2019.2907086
– ident: ref38
  doi: 10.1109/ICDE48307.2020.00094
– ident: ref24
  doi: 10.1145/3397271.3401084
– start-page: 41
  year: 2012
  ident: ref15
  article-title: On the difficulty of nearest neighbor search
  publication-title: Proc Int Conf Mach Learn
– start-page: 521
  year: 2000
  ident: ref13
  article-title: 'N-body' problems in statistical learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref29
  doi: 10.1109/TMM.2017.2699863
– ident: ref4
  doi: 10.1109/TCYB.2018.2836804
– ident: ref5
  doi: 10.1016/j.knosys.2019.06.032
SSID ssj0008781
Score 2.4233074
Snippet The cover tree (CT) and its improved version are hierarchical data structures that simplified navigating nets while maintaining good runtime guarantees. They...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation algorithms
Computed tomography
Computer science
Cover tree
data mining
Data search
data structure and algorithms
Data structures
machine learing
Navigation
Nearest neighbor methods
Runtime
Search algorithms
Synthetic data
Trigonometric functions
Title Cover Trees Revisited: Exploiting Unused Distance and Direction Information
URI https://ieeexplore.ieee.org/document/9998125
https://www.proquest.com/docview/2873585138
Volume 35
WOSCitedRecordID wos001089176900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPVlvFapU9eBLT5rHJJt6kD4RKEWmht7DZTKCXVPrw9zu72RZFL952IQlhJjvzfZkXwL3HpQp16RZGMnR4JLkjfdrmMQZYEOPgmemu_yqm03ixSN5q8HiohUFEk3yGPb00sfx8pXb6V1mfwAz5o7AOdSGiqlbrYHVjYQaSErsgThRwYSOYnpv0Z5PhiJig7_cCQjMi9n74IDNU5ZclNu5l3Pzfi53BqYWR7LnS-znUsGxBcz-igdkT24KTb_0G2zAZ6IRNNlsjbti7qSsnwPnETCLeUidAs3m522DOhhpW0hOYLPXGmMVVyWzxkl5fwHw8mg1eHDtNwVE-D7eOJNm7xCZUEWUaBSRewgvO88wPVCgLOpu57pVP5k65QhWZF0ReRnBLhsrlOcGaS2iUqxKvgEmpw2t5HnlIThALiVIiZonwQ5RulHXgYS_f9KNqmpEasuEmqVZGqpWRWmV0oK0FerjQyrID3b1GUnusNinRu0DHMYP4-u-7buBYz4OvigW70Niud3gLR-pzu9ys78wX8wWmsL7f
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSD9Yn1uQdPYjSPzcub9EGltYhU8BY2mwl4SaUPf78z221R9OJtF5IQZrIz35d5AVx5UumQS7cwUqEjIyUd5dO2SDDAkhiHzE13_UE8HCZvb-lzDW5WtTCIaJLP8JaXJpZfjPWcf5XdEZghfxSuwTpPzrLVWiu7m8RmJCnxC2JFgYxtDNNz07tRv90hLuj7twHhmTjxfnghM1blly02Dqbb-N-r7cKOBZLiYaH5PahhtQ-N5ZAGYc_sPmx_6zh4AP0Wp2yK0QRxKl5MZTlBznthUvHeOQVavFbzKRaizcCSniBUxRtjGMeVsOVLvD6E125n1Oo5dp6Co30ZzhxF0neJT-gyyhkHpF4qSymL3A90qEo6nQV3yyeDp91Yl7kXRF5OgEuF2pUFAZsjqFfjCo9BKMUBtqKIPCQ3iKVCpRDzNPZDVG6UN-F6Kd_sY9E2IzN0w00zVkbGysisMppwwAJdXWhl2YSzpUYye7CmGRG8gCOZQXLy912XsNkbPQ2yweOwfwpbPB1-UTp4BvXZZI7nsKE_Z-_TyYX5er4AxKHCKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cover+Trees+Revisited%3A+Exploiting+Unused+Distance+and+Direction+Information&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wang%2C+Zhi-Jie&rft.au=Nie%2C+Mengdie&rft.au=Zhao%2C+Kaiqi&rft.au=Quan%2C+Zhe&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=1041-4347&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTKDE.2022.3231781&rft.externalDocID=9998125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon