SCKF-LSTM-Based Trajectory Tracking for Electricity-Gas Integrated Energy System

A novel approach of tracking the dynamic trajectories for electricity-gas interconnected networks is developed in the studies, leveraging a Kalman filter-based structure. To capture the accurate system trajectories, the Holt's exponential smoothing techniques and nonlinear dynamic equations of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 21; číslo 6; s. 4296 - 4305
Hlavní autoři: Chen, Liang, Li, Yang, Cai, Jun, Gu, Songlin, Yan, Ying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A novel approach of tracking the dynamic trajectories for electricity-gas interconnected networks is developed in the studies, leveraging a Kalman filter-based structure. To capture the accurate system trajectories, the Holt's exponential smoothing techniques and nonlinear dynamic equations of gas pipelines are applied to establish the power and gas system equations, respectively. Addressing the numerical challenges posed by the strongly nonlinear system, a square-root cubature Kalman technique-based tracking solution is adopted. For the effectiveness in time series prediction, the mass flow rates forecasting task of gas loads is undertaken by employing a long short-term memory network at each computation step. Consequently, a combined method for tracking the dynamic trajectories of comprehensive energy systems by combining these two algorithms is constructed. The IEEE 39-bus network as well as the GasLib-40 node gas network is integrated by gas turbine units to form the multienergy network, and two indexes are introduced for a numerical analysis of the tracking performances. The outcomes demonstrate that the suggested approach significantly improves tracking accuracy when contrasted with the reference measurements.
AbstractList A novel approach of tracking the dynamic trajectories for electricity–gas interconnected networks is developed in the studies, leveraging a Kalman filter-based structure. To capture the accurate system trajectories, the Holt's exponential smoothing techniques and nonlinear dynamic equations of gas pipelines are applied to establish the power and gas system equations, respectively. Addressing the numerical challenges posed by the strongly nonlinear system, a square-root cubature Kalman technique-based tracking solution is adopted. For the effectiveness in time series prediction, the mass flow rates forecasting task of gas loads is undertaken by employing a long short-term memory network at each computation step. Consequently, a combined method for tracking the dynamic trajectories of comprehensive energy systems by combining these two algorithms is constructed. The IEEE 39-bus network as well as the GasLib-40 node gas network is integrated by gas turbine units to form the multienergy network, and two indexes are introduced for a numerical analysis of the tracking performances. The outcomes demonstrate that the suggested approach significantly improves tracking accuracy when contrasted with the reference measurements.
Author Li, Yang
Chen, Liang
Gu, Songlin
Cai, Jun
Yan, Ying
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0002-2412-9066
  surname: Chen
  fullname: Chen, Liang
  email: ch.lg@nuist.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-6515-4567
  surname: Li
  fullname: Li, Yang
  email: liyang@neepu.edu.cn
  organization: School of Electrical Engineering, Northeast Electric Power University, Jilin, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-4574-1692
  surname: Cai
  fullname: Cai, Jun
  email: j.cai@nuist.edu.cn
  organization: C-MEIC, CICAEET, and School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Songlin
  surname: Gu
  fullname: Gu, Songlin
  email: gsl0516@163.com
  organization: State Grid Economic and Technological Research Institute Company Ltd, Beijing, China
– sequence: 5
  givenname: Ying
  orcidid: 0000-0002-3609-0496
  surname: Yan
  fullname: Yan, Ying
  email: ying.yan@nuist.edu.cn
  organization: C-MEIC, CICAEET, and School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNpNkM1PAjEQxRuDiYjePXjYxHNx-rXQoxLAjRhNWM9Nd9uSRdjFthz2v7cEDp7mZfLeTN7vFg3arrUIPRAYEwLyuSyKMQXKx0xQJji_QkMiOcEAAgZJC0Ewo8Bu0G0IWwA2ASaH6Gs9e1_g1br8wK86WJOVXm9tHTvfn2T907SbzHU-m-_S1jd1E3u81CEr2mg3XscUmbfWb_ps3Ydo93fo2uldsPeXOULfi3k5e8Orz2Uxe1nhmnIRsSamMlpSbvTUVcLyCpzRzhmTS5BQARPTSvNc5zXRE0qdoXRaOZlr65iGnI3Q0_nuwXe_Rxui2nZH36aXKtVM5aigIrng7Kp9F4K3Th18s9e-VwTUiZtK3NSJm7pwS5HHc6Sx1v6zS0JzMWF_2GFrBg
CODEN ITIICH
Cites_doi 10.1016/j.energy.2021.121917
10.1016/j.jenvman.2024.120131
10.1109/TSG.2018.2870327
10.1109/TII.2017.2730846
10.3390/rs14184494
10.1016/j.automatica.2023.111148
10.1109/TIA.2022.3161607
10.1109/TIM.2023.3338666
10.1016/j.jfranklin.2023.07.022
10.23919/PCMP.2023.000142
10.1109/TAC.2009.2019800
10.1016/j.energy.2022.125083
10.1016/j.apenergy.2023.120866
10.1016/j.arcontrol.2023.100909
10.1016/j.est.2023.108920
10.1016/j.egyr.2023.06.027
10.1016/j.enconman.2022.115447
10.1109/TSG.2018.2847223
10.17775/CSEEJPES.2019.00400
10.1016/j.energy.2022.124068
10.1109/EI256261.2022.10117101
10.1016/j.epsr.2023.109557
10.1016/j.energy.2023.127007
10.1109/TII.2023.3242580
10.1016/j.isatra.2023.02.010
10.1016/j.est.2023.108245
10.1109/tii.2023.3275712
10.1016/j.egyr.2023.05.046
10.3390/data2040040
10.1109/TSTE.2017.2717600
10.1016/j.apenergy.2020.114789
10.1016/j.energy.2020.117664
10.1109/JSEN.2022.3159662
10.1109/TII.2021.3109095
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3523544
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 4305
ExternalDocumentID 10_1109_TII_2024_3523544
10912657
Genre orig-research
GrantInformation_xml – fundername: Excellent Research and Innovation Teams in Universities in Anhui Province
  grantid: 2023AH010021
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-a1dbda924da8fb5e4b0fdaffdd69090b0358ba46a6c1a722fd228bf96aef3a063
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470754000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Sat Nov 08 14:18:57 EST 2025
Sat Nov 29 07:55:32 EST 2025
Wed Aug 27 01:53:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-a1dbda924da8fb5e4b0fdaffdd69090b0358ba46a6c1a722fd228bf96aef3a063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4574-1692
0000-0002-2412-9066
0000-0002-6515-4567
0000-0002-3609-0496
PQID 3207032525
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_10912657
crossref_primary_10_1109_TII_2024_3523544
proquest_journals_3207032525
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
Fayha (ref31) 2023; 151
ref18
Alisson (ref34) 2023; 155
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref32
  doi: 10.1016/j.energy.2021.121917
– ident: ref33
  doi: 10.1016/j.jenvman.2024.120131
– ident: ref8
  doi: 10.1109/TSG.2018.2870327
– ident: ref24
  doi: 10.1109/TII.2017.2730846
– volume: 151
  year: 2023
  ident: ref31
  article-title: Detection and mitigation of GPS spoofing attacks on phasor measurement units using deep learning
  publication-title: Int. J. Elect. Power Energy Syst.
– ident: ref22
  doi: 10.3390/rs14184494
– ident: ref6
  doi: 10.1016/j.automatica.2023.111148
– volume: 155
  year: 2023
  ident: ref34
  article-title: Dynamical homotopy transient-based technique to improve the convergence of ill-posed power flow problem
  publication-title: Int. J. Elect. Power Energy Syst.
– ident: ref11
  doi: 10.1109/TIA.2022.3161607
– ident: ref29
  doi: 10.1109/TIM.2023.3338666
– ident: ref16
  doi: 10.1016/j.jfranklin.2023.07.022
– ident: ref30
  doi: 10.23919/PCMP.2023.000142
– ident: ref15
  doi: 10.1109/TAC.2009.2019800
– ident: ref17
  doi: 10.1016/j.energy.2022.125083
– ident: ref7
  doi: 10.1016/j.apenergy.2023.120866
– ident: ref21
  doi: 10.1016/j.arcontrol.2023.100909
– ident: ref19
  doi: 10.1016/j.est.2023.108920
– ident: ref4
  doi: 10.1016/j.egyr.2023.06.027
– ident: ref10
  doi: 10.1016/j.enconman.2022.115447
– ident: ref23
  doi: 10.1109/TSG.2018.2847223
– ident: ref28
  doi: 10.17775/CSEEJPES.2019.00400
– ident: ref36
  doi: 10.1016/j.energy.2022.124068
– ident: ref27
  doi: 10.1109/EI256261.2022.10117101
– ident: ref3
  doi: 10.1016/j.epsr.2023.109557
– ident: ref18
  doi: 10.1016/j.energy.2023.127007
– ident: ref2
  doi: 10.1109/TII.2023.3242580
– ident: ref13
  doi: 10.1016/j.isatra.2023.02.010
– ident: ref20
  doi: 10.1016/j.est.2023.108245
– ident: ref1
  doi: 10.1109/tii.2023.3275712
– ident: ref5
  doi: 10.1016/j.egyr.2023.05.046
– ident: ref35
  doi: 10.3390/data2040040
– ident: ref9
  doi: 10.1109/TSTE.2017.2717600
– ident: ref25
  doi: 10.1016/j.apenergy.2020.114789
– ident: ref14
  doi: 10.1016/j.energy.2020.117664
– ident: ref26
  doi: 10.1109/JSEN.2022.3159662
– ident: ref12
  doi: 10.1109/TII.2021.3109095
SSID ssj0037039
Score 2.437112
Snippet A novel approach of tracking the dynamic trajectories for electricity-gas interconnected networks is developed in the studies, leveraging a Kalman filter-based...
A novel approach of tracking the dynamic trajectories for electricity–gas interconnected networks is developed in the studies, leveraging a Kalman filter-based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4296
SubjectTerms Algorithms
Current measurement
Dynamical systems
Electricity
Gas pipelines
Gas turbines
Integrated energy system (IES)
Integrated energy systems
Kalman filters
Long short term memory
long short-term memory (LSTM)
Mass flow rate
Mathematical models
Nonlinear dynamics
Nonlinear systems
Numerical analysis
Pipelines
Power system dynamics
Predictive models
Smoothing methods
square-root cubature Kalman filter (SCKF)
Tracking
Trajectory tracking
Vectors
Title SCKF-LSTM-Based Trajectory Tracking for Electricity-Gas Integrated Energy System
URI https://ieeexplore.ieee.org/document/10912657
https://www.proquest.com/docview/3207032525
Volume 21
WOSCitedRecordID wos001470754000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCDz4rVKjl48ZB2m2w2yVGl1WKVQiv0tuQJ9dBKH4L_3iS7CxXx4C2HLIRvksx8k51vALgJuQThmEHCOE9QFAttXqhC3EluKdeY2SiZP2Svr3w6FaOyWD3Wwlhr489nth2G8S3fLPQmpMo6QcQSZ5TVQI0xVhRrVdcu8VtXRHFU2kUEJ6R6k0xEZzIYeCaI07aPNvza0h8-KDZV-XUTR_fSP_znwo7AQRlHwrvC8Mdgx85PwP6WuuApGI0fnvtoOJ68oHvvqwz0fuk9Jum_wlCHJDn0MSvsxVY4M-0DcvQoV3BQSUgY2IulgbDQNW-At35v8vCEygYKSOOUrpHsGmWkZ1hGcqeoTVXijHTOGM-JRaISQrmSaSYz3ZUMY2cw5sqJTFpHpA9ezkB9vpjbcwCtSRNHuHRGE3_MM8WtlURTo4RMmJVNcFtBmn8UOhl55BeJyD38eYA_L-FvgkaAcGtegV4TtCoj5OVJWuXelN6ymGJ68cdnl2APh6a8MTXSAvX1cmOvwK7-XM9Wy-u4Sb4BfS-7PA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGnkWUZwYWBkPixIk9QtVCRagqtUhskZ9SGVrUBxL_HttJpCLEwObBkazvbN9959x3ANcul8BMphBTxhIUkbk2L0QgajjVhEqcaS-Zn2f9Pn17Y4OqWN3Xwmit_c9n-tYN_Vu-msqlS5XdORFLnJJsHTZIkuCoLNeqL97Ybl7m5VFJhGIcxvWrZMjuRr2e5YI4ubXxhl1d8sML-bYqv-5i72C6e_9c2j7sVpFkcF-a_gDW9OQQdlb0BY9gMGw_d1E-HL2gB-utVGA907tP03-5oXRp8sBGrUHHN8MZSxuSo0c-D3q1iIQKOr44MCiVzZvw2u2M2k-oaqGAJE7IAvFICcUtx1KcGkF0IkKjuDFKWVbMQhHGhAqepDyVEc8wNgpjKgxLuTYxt-HLMTQm04k-gUCrJDQx5UbJ2B70VFCteSyJEoyHmeYtuKkhLT5KpYzCM4yQFRb-wsFfVPC3oOkgXJlXoteC89oIRXWW5oU1pbUsJpic_vHZFWw9jV7yIu_1n89gG7sWvT5Rcg6NxWypL2BTfi7G89ml3zDfZq6-gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCKF-LSTM-Based+Trajectory+Tracking+for+Electricity%E2%80%93Gas+Integrated+Energy+System&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Chen%2C+Liang&rft.au=Li%2C+Yang&rft.au=Cai%2C+Jun&rft.au=Gu%2C+Songlin&rft.date=2025-06-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=21&rft.issue=6&rft.spage=4296&rft.epage=4305&rft_id=info:doi/10.1109%2FTII.2024.3523544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2024_3523544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon