Joint Near Field Uplink Communication and Localization Using Message Passing-Based Sparse Bayesian Learning

This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on vehicular technology Jg. 74; H. 5; S. 7666 - 7675
Hauptverfasser: Liu, Fei, Yuan, Zhengdao, Guo, Qinghua, Zhang, Yuanyuan, Wang, Zhongyong, Zhang, J. Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal detection and localization as a problem of recovering signals with a sparse pattern, and we adopt differentiation modulations to avoid the frequent use of pilot signals. To solve the problem, we develop a message passing based sparse Bayesian learning (SBL) algorithm, where multiple unitary approximate message passing (UAMP)-based sparse signal estimators work jointly to recover the sparse signals with low complexity. Simulation results demonstrate the effectiveness of the proposed method.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2025.3525509