Joint Near Field Uplink Communication and Localization Using Message Passing-Based Sparse Bayesian Learning
This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal det...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on vehicular technology Jg. 74; H. 5; S. 7666 - 7675 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal detection and localization as a problem of recovering signals with a sparse pattern, and we adopt differentiation modulations to avoid the frequent use of pilot signals. To solve the problem, we develop a message passing based sparse Bayesian learning (SBL) algorithm, where multiple unitary approximate message passing (UAMP)-based sparse signal estimators work jointly to recover the sparse signals with low complexity. Simulation results demonstrate the effectiveness of the proposed method. |
|---|---|
| AbstractList | This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal detection and localization as a problem of recovering signals with a sparse pattern, and we adopt differentiation modulations to avoid the frequent use of pilot signals. To solve the problem, we develop a message passing based sparse Bayesian learning (SBL) algorithm, where multiple unitary approximate message passing (UAMP)-based sparse signal estimators work jointly to recover the sparse signals with low complexity. Simulation results demonstrate the effectiveness of the proposed method. |
| Author | Guo, Qinghua Wang, Zhongyong Liu, Fei Zhang, J. Andrew Zhang, Yuanyuan Yuan, Zhengdao |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0003-3156-4821 surname: Liu fullname: Liu, Fei email: ieliufei@hotmail.com organization: School of Geoscience and Techonology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Zhengdao orcidid: 0000-0002-8715-0284 surname: Yuan fullname: Yuan, Zhengdao email: yuan_zhengdao@163.com organization: School of Information Engineering and Artificial Intelligence, Open University of Henan Zhengzhou, Zhengzhou, China – sequence: 3 givenname: Qinghua orcidid: 0000-0002-5180-7854 surname: Guo fullname: Guo, Qinghua email: qguo@uow.edu.au organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia – sequence: 4 givenname: Yuanyuan orcidid: 0000-0001-9653-6878 surname: Zhang fullname: Zhang, Yuanyuan email: ieyyzhang@zzuli.edu.cn organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia – sequence: 5 givenname: Zhongyong orcidid: 0000-0002-9217-6200 surname: Wang fullname: Wang, Zhongyong email: zywangzzu@gmail.com organization: School of Geoscience and Techonology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 6 givenname: J. Andrew orcidid: 0000-0002-6102-3762 surname: Zhang fullname: Zhang, J. Andrew email: Andrew.Zhang@uts.edu.au organization: Global Big Data Technologies Centre, University of Technology Sydney, Sydney, NSW, Australia |
| BookMark | eNpNkLtPwzAQxi1UJNrCzsBgiTnFj5jEI60oD4WHRMsaXZ1L5Ta1Q5wO5a8nUTswnb67777T_UZk4LxDQq45m3DO9N3iezERTKiJVEIpps_IkGupIy2VHpAhYzyNtIrVBRmFsOlkHGs-JNtXb11L3xEaOrdYFXRZV9Zt6czvdntnDbTWOwquoJk3UNnfY2MZrFvTNwwB1kg_IfQ6mkLAgn7V0ASkUzhgsOBo1oW7bnxJzkuoAl6d6pgs54-L2XOUfTy9zB6yyIhYtVF6n4BIJQqhjIJUrUpuUAlghmMsZcF53D0Tg2QrJqEwSYomZQUkOimTGLkck9tjbt34nz2GNt_4feO6k7kULGFCCtW72NFlGh9Cg2VeN3YHzSHnLO-R5h3SvEean5B2KzfHFYuI_-ypYKpL_QOdz3Qi |
| CODEN | ITVTAB |
| Cites_doi | 10.1109/JIOT.2022.3215714 10.1109/TSP.2019.2923164 10.1109/TSP.2021.3101696 10.1109/TCOMM.2023.3260242 10.1109/TWC.2024.3351856 10.1109/ICCWorkshops53468.2022.9814670 10.1109/IEEECONF53345.2021.9723331 10.1109/JIOT.2024.3386397 10.1109/TCOMM.2022.3187780 10.1109/TWC.2021.3126384 10.1109/jiot.2024.3447584 10.1109/TVT.2023.3241935 10.1109/LCOMM.2021.3124927 10.1109/JIOT.2024.3413895 10.1109/LCOMM.2023.3280132 10.1109/TWC.2023.3244195 10.1109/MCOM.004.2200136 10.1109/TSP.2021.3114985 10.1109/29.32276 10.1109/PIMRC54779.2022.9977582 10.1109/TAP.2019.2925199 10.1109/LCOMM.2022.3151036 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2025.3525509 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 7675 |
| ExternalDocumentID | 10_1109_TVT_2025_3525509 10820502 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Henan Province grantid: 242300420676 funderid: 10.13039/501100006407 – fundername: National Natural Science Foundation of China grantid: 62101506 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c245t-867a283e225c5a85bf1ce52a0c1e433d1140184a30b03adc78ec80da797f74e13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494089800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Sat Nov 22 13:41:10 EST 2025 Sat Nov 29 07:53:13 EST 2025 Wed Aug 27 01:53:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-867a283e225c5a85bf1ce52a0c1e433d1140184a30b03adc78ec80da797f74e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9653-6878 0000-0002-9217-6200 0000-0002-6102-3762 0000-0002-5180-7854 0000-0002-8715-0284 0000-0003-3156-4821 |
| PQID | 3207023251 |
| PQPubID | 85454 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_3207023251 ieee_primary_10820502 crossref_primary_10_1109_TVT_2025_3525509 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Pan (ref23) 2016 Guo (ref20) 2015 ref26 ref22 ref21 Tipping (ref24) 2001; 1 ref8 ref7 ref9 ref4 Zhang (ref25) 2017; 131 ref3 ref6 ref5 Mao (ref27) 2020; 106 |
| References_xml | – ident: ref9 doi: 10.1109/JIOT.2022.3215714 – ident: ref16 doi: 10.1109/TSP.2019.2923164 – year: 2015 ident: ref20 article-title: Approximate message passing with unitary transformation – ident: ref2 doi: 10.1109/TSP.2021.3101696 – ident: ref3 doi: 10.1109/TCOMM.2023.3260242 – volume: 106 volume-title: Digit. Signal Process. year: 2020 ident: ref27 article-title: Low complexity DOA estimation using AMP with unitary transformation and iterative refinement – volume: 131 start-page: 344 volume-title: Signal Process. year: 2017 ident: ref25 article-title: Low complexity sparse Bayesian learning using combined belief propagation and mean field with a stretched factor graph – ident: ref14 doi: 10.1109/TWC.2024.3351856 – ident: ref10 doi: 10.1109/ICCWorkshops53468.2022.9814670 – ident: ref17 doi: 10.1109/IEEECONF53345.2021.9723331 – ident: ref8 doi: 10.1109/JIOT.2024.3386397 – ident: ref13 doi: 10.1109/TCOMM.2022.3187780 – ident: ref18 doi: 10.1109/TWC.2021.3126384 – ident: ref15 doi: 10.1109/jiot.2024.3447584 – ident: ref7 doi: 10.1109/TVT.2023.3241935 – ident: ref5 doi: 10.1109/LCOMM.2021.3124927 – year: 2016 ident: ref23 article-title: Joint channel estimation and localization in the near field of RIS enabled mmWave/subTHz communications – ident: ref26 doi: 10.1109/JIOT.2024.3413895 – ident: ref6 doi: 10.1109/LCOMM.2023.3280132 – ident: ref11 doi: 10.1109/TWC.2023.3244195 – ident: ref1 doi: 10.1109/MCOM.004.2200136 – ident: ref21 doi: 10.1109/TSP.2021.3114985 – ident: ref12 doi: 10.1109/29.32276 – ident: ref4 doi: 10.1109/PIMRC54779.2022.9977582 – ident: ref22 doi: 10.1109/TAP.2019.2925199 – ident: ref19 doi: 10.1109/LCOMM.2022.3151036 – volume: 1 start-page: 211 issue: 3 year: 2001 ident: ref24 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. |
| SSID | ssj0014491 |
| Score | 2.4660957 |
| Snippet | This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 7666 |
| SubjectTerms | Algorithms Antenna arrays Antennas Bayesian analysis Carrier frequencies Channel estimation Communications systems Estimation joint communication and localization Localization Location awareness Machine learning Message passing Near field Near fields Noise measurement Robot learning Signal detection Simulation sparse Bayesian learning (SBL) Sparse matrices Symbols Uplink Uplinking Vectors |
| Title | Joint Near Field Uplink Communication and Localization Using Message Passing-Based Sparse Bayesian Learning |
| URI | https://ieeexplore.ieee.org/document/10820502 https://www.proquest.com/docview/3207023251 |
| Volume | 74 |
| WOSCitedRecordID | wos001494089800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46fNAHf06cTsmDLz50pk26tI9OHCI6Bm6yt5ImtyGDbmyd4H_vJc1kIj741kJTyl0ud9e77z5Cru38EsBMOWhHOQQiV0mQp8JyvShphMpzllZkE7LXS0ajtO_B6g4LAwCu-Qxa9tLV8s1Mr-yvMrRw9FexHR25LWW7Amt9lwyE8PR4IVowxgXrmiRLbwdvA8wEo7hlZ3_Gtvdwwwc5UpVfJ7FzL92Df37YIdn3cSS9qxR_RLagOCZ7G9MFT8j0afZelLSHe5l2baMaHVr47ZT-AIVQVRj6bD2aR2RS10VAXyw3ygRoH6NrvA866O4MfZ1jIgy0oz7Boi-pH886qZNh92Fw_xh4boVARyIug6QtFUYWgOasY5XE-TjUEEeK6RAE5ya0iVciFGc548pomYBOmFEylWMpIOSnpFbMCjgjNNVCMM00jDkuVbkyTEdSM4ik5BhQNcjNWtrZvBqhkbnUg6UZaiazmsm8ZhqkbqW78Vwl2AZprvWTeSNbZjzC8wojwjg8_2PZBdm1b68aFJukVi5WcEl29Ef5vlxcuf3zBejIwyU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCurBZ8Vq1T148ZC6STbd5GjFUrUWwVZ6C5vNtJRCWvoQ_PfOJFupiAdvCWRJmNnZmcnMNx9j1zS_BDBTdupeAo5MdOgkkSSuF61SqZNERAXZhOp0wn4_erVg9RwLAwB58xnU6DKv5acTs6RfZWjh6K8CGh25SdRZFq71XTSQ0hLkuWjDGBmsqpIiuu2-dzEX9IIaTf8MqPtwzQvltCq_zuLcwTT3__lpB2zPRpL8rlD9IduA7Ijtrs0XPGbjp8koW_AO7mbepFY13iMA7pj_gIVwnaW8TT7NYjJ53kfAX4gdZQj8FeNrvHca6PBS_jbFVBh4Q38C4S-5HdA6LLNe86F733Isu4JjPBksnLCuNMYWgAZtAh0GycA1EHhaGBek76cupV6h1L5IhK9To0IwoUi1itRASXD9E1bKJhmcMh4ZKYURBgY-LtWJToXxlBHgKeVjSFVhNytpx9NiiEacJx8iilEzMWkmtpqpsDJJd-25QrAVVl3pJ7ZmNo99D08sjAkD9-yPZVdsu9V9acftx87zOduhNxXtilVWWsyWcMG2zMdiNJ9d5nvpCz9qxm4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Near+Field+Uplink+Communication+and+Localization+Using+Message+Passing-Based+Sparse+Bayesian+Learning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Liu%2C+Fei&rft.au=Yuan%2C+Zhengdao&rft.au=Guo%2C+Qinghua&rft.au=Zhang%2C+Yuanyuan&rft.date=2025-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=74&rft.issue=11&rft.spage=7666&rft.epage=7675&rft_id=info:doi/10.1109%2FTVT.2025.3525509&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |