Joint Near Field Uplink Communication and Localization Using Message Passing-Based Sparse Bayesian Learning

This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on vehicular technology Jg. 74; H. 5; S. 7666 - 7675
Hauptverfasser: Liu, Fei, Yuan, Zhengdao, Guo, Qinghua, Zhang, Yuanyuan, Wang, Zhongyong, Zhang, J. Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal detection and localization as a problem of recovering signals with a sparse pattern, and we adopt differentiation modulations to avoid the frequent use of pilot signals. To solve the problem, we develop a message passing based sparse Bayesian learning (SBL) algorithm, where multiple unitary approximate message passing (UAMP)-based sparse signal estimators work jointly to recover the sparse signals with low complexity. Simulation results demonstrate the effectiveness of the proposed method.
AbstractList This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field (NF) of antenna aperture due to the use of high carrier frequency and large antenna arrays at base stations. We formulate joint NF signal detection and localization as a problem of recovering signals with a sparse pattern, and we adopt differentiation modulations to avoid the frequent use of pilot signals. To solve the problem, we develop a message passing based sparse Bayesian learning (SBL) algorithm, where multiple unitary approximate message passing (UAMP)-based sparse signal estimators work jointly to recover the sparse signals with low complexity. Simulation results demonstrate the effectiveness of the proposed method.
Author Guo, Qinghua
Wang, Zhongyong
Liu, Fei
Zhang, J. Andrew
Zhang, Yuanyuan
Yuan, Zhengdao
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0003-3156-4821
  surname: Liu
  fullname: Liu, Fei
  email: ieliufei@hotmail.com
  organization: School of Geoscience and Techonology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Zhengdao
  orcidid: 0000-0002-8715-0284
  surname: Yuan
  fullname: Yuan, Zhengdao
  email: yuan_zhengdao@163.com
  organization: School of Information Engineering and Artificial Intelligence, Open University of Henan Zhengzhou, Zhengzhou, China
– sequence: 3
  givenname: Qinghua
  orcidid: 0000-0002-5180-7854
  surname: Guo
  fullname: Guo, Qinghua
  email: qguo@uow.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia
– sequence: 4
  givenname: Yuanyuan
  orcidid: 0000-0001-9653-6878
  surname: Zhang
  fullname: Zhang, Yuanyuan
  email: ieyyzhang@zzuli.edu.cn
  organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW, Australia
– sequence: 5
  givenname: Zhongyong
  orcidid: 0000-0002-9217-6200
  surname: Wang
  fullname: Wang, Zhongyong
  email: zywangzzu@gmail.com
  organization: School of Geoscience and Techonology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 6
  givenname: J. Andrew
  orcidid: 0000-0002-6102-3762
  surname: Zhang
  fullname: Zhang, J. Andrew
  email: Andrew.Zhang@uts.edu.au
  organization: Global Big Data Technologies Centre, University of Technology Sydney, Sydney, NSW, Australia
BookMark eNpNkLtPwzAQxi1UJNrCzsBgiTnFj5jEI60oD4WHRMsaXZ1L5Ta1Q5wO5a8nUTswnb67777T_UZk4LxDQq45m3DO9N3iezERTKiJVEIpps_IkGupIy2VHpAhYzyNtIrVBRmFsOlkHGs-JNtXb11L3xEaOrdYFXRZV9Zt6czvdntnDbTWOwquoJk3UNnfY2MZrFvTNwwB1kg_IfQ6mkLAgn7V0ASkUzhgsOBo1oW7bnxJzkuoAl6d6pgs54-L2XOUfTy9zB6yyIhYtVF6n4BIJQqhjIJUrUpuUAlghmMsZcF53D0Tg2QrJqEwSYomZQUkOimTGLkck9tjbt34nz2GNt_4feO6k7kULGFCCtW72NFlGh9Cg2VeN3YHzSHnLO-R5h3SvEean5B2KzfHFYuI_-ypYKpL_QOdz3Qi
CODEN ITVTAB
Cites_doi 10.1109/JIOT.2022.3215714
10.1109/TSP.2019.2923164
10.1109/TSP.2021.3101696
10.1109/TCOMM.2023.3260242
10.1109/TWC.2024.3351856
10.1109/ICCWorkshops53468.2022.9814670
10.1109/IEEECONF53345.2021.9723331
10.1109/JIOT.2024.3386397
10.1109/TCOMM.2022.3187780
10.1109/TWC.2021.3126384
10.1109/jiot.2024.3447584
10.1109/TVT.2023.3241935
10.1109/LCOMM.2021.3124927
10.1109/JIOT.2024.3413895
10.1109/LCOMM.2023.3280132
10.1109/TWC.2023.3244195
10.1109/MCOM.004.2200136
10.1109/TSP.2021.3114985
10.1109/29.32276
10.1109/PIMRC54779.2022.9977582
10.1109/TAP.2019.2925199
10.1109/LCOMM.2022.3151036
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2025.3525509
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 7675
ExternalDocumentID 10_1109_TVT_2025_3525509
10820502
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Henan Province
  grantid: 242300420676
  funderid: 10.13039/501100006407
– fundername: National Natural Science Foundation of China
  grantid: 62101506
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c245t-867a283e225c5a85bf1ce52a0c1e433d1140184a30b03adc78ec80da797f74e13
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494089800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Sat Nov 22 13:41:10 EST 2025
Sat Nov 29 07:53:13 EST 2025
Wed Aug 27 01:53:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-867a283e225c5a85bf1ce52a0c1e433d1140184a30b03adc78ec80da797f74e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9653-6878
0000-0002-9217-6200
0000-0002-6102-3762
0000-0002-5180-7854
0000-0002-8715-0284
0000-0003-3156-4821
PQID 3207023251
PQPubID 85454
PageCount 10
ParticipantIDs proquest_journals_3207023251
ieee_primary_10820502
crossref_primary_10_1109_TVT_2025_3525509
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Pan (ref23) 2016
Guo (ref20) 2015
ref26
ref22
ref21
Tipping (ref24) 2001; 1
ref8
ref7
ref9
ref4
Zhang (ref25) 2017; 131
ref3
ref6
ref5
Mao (ref27) 2020; 106
References_xml – ident: ref9
  doi: 10.1109/JIOT.2022.3215714
– ident: ref16
  doi: 10.1109/TSP.2019.2923164
– year: 2015
  ident: ref20
  article-title: Approximate message passing with unitary transformation
– ident: ref2
  doi: 10.1109/TSP.2021.3101696
– ident: ref3
  doi: 10.1109/TCOMM.2023.3260242
– volume: 106
  volume-title: Digit. Signal Process.
  year: 2020
  ident: ref27
  article-title: Low complexity DOA estimation using AMP with unitary transformation and iterative refinement
– volume: 131
  start-page: 344
  volume-title: Signal Process.
  year: 2017
  ident: ref25
  article-title: Low complexity sparse Bayesian learning using combined belief propagation and mean field with a stretched factor graph
– ident: ref14
  doi: 10.1109/TWC.2024.3351856
– ident: ref10
  doi: 10.1109/ICCWorkshops53468.2022.9814670
– ident: ref17
  doi: 10.1109/IEEECONF53345.2021.9723331
– ident: ref8
  doi: 10.1109/JIOT.2024.3386397
– ident: ref13
  doi: 10.1109/TCOMM.2022.3187780
– ident: ref18
  doi: 10.1109/TWC.2021.3126384
– ident: ref15
  doi: 10.1109/jiot.2024.3447584
– ident: ref7
  doi: 10.1109/TVT.2023.3241935
– ident: ref5
  doi: 10.1109/LCOMM.2021.3124927
– year: 2016
  ident: ref23
  article-title: Joint channel estimation and localization in the near field of RIS enabled mmWave/subTHz communications
– ident: ref26
  doi: 10.1109/JIOT.2024.3413895
– ident: ref6
  doi: 10.1109/LCOMM.2023.3280132
– ident: ref11
  doi: 10.1109/TWC.2023.3244195
– ident: ref1
  doi: 10.1109/MCOM.004.2200136
– ident: ref21
  doi: 10.1109/TSP.2021.3114985
– ident: ref12
  doi: 10.1109/29.32276
– ident: ref4
  doi: 10.1109/PIMRC54779.2022.9977582
– ident: ref22
  doi: 10.1109/TAP.2019.2925199
– ident: ref19
  doi: 10.1109/LCOMM.2022.3151036
– volume: 1
  start-page: 211
  issue: 3
  year: 2001
  ident: ref24
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
SSID ssj0014491
Score 2.4660957
Snippet This work deals with the problem of uplink communication and localization in an integrated sensing and communication system, where users are in the near field...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7666
SubjectTerms Algorithms
Antenna arrays
Antennas
Bayesian analysis
Carrier frequencies
Channel estimation
Communications systems
Estimation
joint communication and localization
Localization
Location awareness
Machine learning
Message passing
Near field
Near fields
Noise measurement
Robot learning
Signal detection
Simulation
sparse Bayesian learning (SBL)
Sparse matrices
Symbols
Uplink
Uplinking
Vectors
Title Joint Near Field Uplink Communication and Localization Using Message Passing-Based Sparse Bayesian Learning
URI https://ieeexplore.ieee.org/document/10820502
https://www.proquest.com/docview/3207023251
Volume 74
WOSCitedRecordID wos001494089800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46fNAHf06cTsmDLz50pk26tI9OHCI6Bm6yt5ImtyGDbmyd4H_vJc1kIj741kJTyl0ud9e77z5Cru38EsBMOWhHOQQiV0mQp8JyvShphMpzllZkE7LXS0ajtO_B6g4LAwCu-Qxa9tLV8s1Mr-yvMrRw9FexHR25LWW7Amt9lwyE8PR4IVowxgXrmiRLbwdvA8wEo7hlZ3_Gtvdwwwc5UpVfJ7FzL92Df37YIdn3cSS9qxR_RLagOCZ7G9MFT8j0afZelLSHe5l2baMaHVr47ZT-AIVQVRj6bD2aR2RS10VAXyw3ygRoH6NrvA866O4MfZ1jIgy0oz7Boi-pH886qZNh92Fw_xh4boVARyIug6QtFUYWgOasY5XE-TjUEEeK6RAE5ya0iVciFGc548pomYBOmFEylWMpIOSnpFbMCjgjNNVCMM00jDkuVbkyTEdSM4ik5BhQNcjNWtrZvBqhkbnUg6UZaiazmsm8ZhqkbqW78Vwl2AZprvWTeSNbZjzC8wojwjg8_2PZBdm1b68aFJukVi5WcEl29Ef5vlxcuf3zBejIwyU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCurBZ8Vq1T148ZC6STbd5GjFUrUWwVZ6C5vNtJRCWvoQ_PfOJFupiAdvCWRJmNnZmcnMNx9j1zS_BDBTdupeAo5MdOgkkSSuF61SqZNERAXZhOp0wn4_erVg9RwLAwB58xnU6DKv5acTs6RfZWjh6K8CGh25SdRZFq71XTSQ0hLkuWjDGBmsqpIiuu2-dzEX9IIaTf8MqPtwzQvltCq_zuLcwTT3__lpB2zPRpL8rlD9IduA7Ijtrs0XPGbjp8koW_AO7mbepFY13iMA7pj_gIVwnaW8TT7NYjJ53kfAX4gdZQj8FeNrvHca6PBS_jbFVBh4Q38C4S-5HdA6LLNe86F733Isu4JjPBksnLCuNMYWgAZtAh0GycA1EHhaGBek76cupV6h1L5IhK9To0IwoUi1itRASXD9E1bKJhmcMh4ZKYURBgY-LtWJToXxlBHgKeVjSFVhNytpx9NiiEacJx8iilEzMWkmtpqpsDJJd-25QrAVVl3pJ7ZmNo99D08sjAkD9-yPZVdsu9V9acftx87zOduhNxXtilVWWsyWcMG2zMdiNJ9d5nvpCz9qxm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Near+Field+Uplink+Communication+and+Localization+Using+Message+Passing-Based+Sparse+Bayesian+Learning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Liu%2C+Fei&rft.au=Yuan%2C+Zhengdao&rft.au=Guo%2C+Qinghua&rft.au=Zhang%2C+Yuanyuan&rft.date=2025-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=74&rft.issue=11&rft.spage=7666&rft.epage=7675&rft_id=info:doi/10.1109%2FTVT.2025.3525509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon