Loopless Variance Reduced Stochastic ADMM for Equality Constrained Problems in IoT Applications
The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear...
Uložené v:
| Vydané v: | IEEE internet of things journal Ročník 9; číslo 3; s. 2293 - 2303 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear convergence for strongly convex (SC) problems. However, SVRG-ADMM and its variants have an outer loop where the full gradient at the snapshot is computed, and their outer loop contains an inner loop, in which a large number of variance reduced gradients are estimated from random samples. This loopy design makes these methods more complex to analyze and determine the inner loop length, which must be proportional to the condition number to achieve best convergence, and is often set to <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> as a suboptimal choice, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the number of samples. To tackle these issues, we propose an efficient loopless variance reduced stochastic ADMM algorithm, called LVR-SADMM. In our LVR-SADMM, we remove the outer loop and replace it with a biased coin-flip, in which we update the snapshot with a small probability to trigger the full gradient computation. Moreover, we also theoretically analyze the convergence property of LVR-SADMM, which shows that it enjoys a fast linear convergence rate for SC problems. In particular, we also present an accelerated loopless SVRG-ADMM (LAVR-SADMM) method for both SC and non-SC problems. Various experimental results on many real-world data sets verify that the proposed methods can achieve an average speedup of <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> in the SC case and <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula> in the non-SC case over their loopy counterparts, respectively. |
|---|---|
| AbstractList | The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear convergence for strongly convex (SC) problems. However, SVRG-ADMM and its variants have an outer loop where the full gradient at the snapshot is computed, and their outer loop contains an inner loop, in which a large number of variance reduced gradients are estimated from random samples. This loopy design makes these methods more complex to analyze and determine the inner loop length, which must be proportional to the condition number to achieve best convergence, and is often set to <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> as a suboptimal choice, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the number of samples. To tackle these issues, we propose an efficient loopless variance reduced stochastic ADMM algorithm, called LVR-SADMM. In our LVR-SADMM, we remove the outer loop and replace it with a biased coin-flip, in which we update the snapshot with a small probability to trigger the full gradient computation. Moreover, we also theoretically analyze the convergence property of LVR-SADMM, which shows that it enjoys a fast linear convergence rate for SC problems. In particular, we also present an accelerated loopless SVRG-ADMM (LAVR-SADMM) method for both SC and non-SC problems. Various experimental results on many real-world data sets verify that the proposed methods can achieve an average speedup of <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> in the SC case and <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula> in the non-SC case over their loopy counterparts, respectively. The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear convergence for strongly convex (SC) problems. However, SVRG-ADMM and its variants have an outer loop where the full gradient at the snapshot is computed, and their outer loop contains an inner loop, in which a large number of variance reduced gradients are estimated from random samples. This loopy design makes these methods more complex to analyze and determine the inner loop length, which must be proportional to the condition number to achieve best convergence, and is often set to [Formula Omitted] as a suboptimal choice, where [Formula Omitted] is the number of samples. To tackle these issues, we propose an efficient loopless variance reduced stochastic ADMM algorithm, called LVR-SADMM. In our LVR-SADMM, we remove the outer loop and replace it with a biased coin-flip, in which we update the snapshot with a small probability to trigger the full gradient computation. Moreover, we also theoretically analyze the convergence property of LVR-SADMM, which shows that it enjoys a fast linear convergence rate for SC problems. In particular, we also present an accelerated loopless SVRG-ADMM (LAVR-SADMM) method for both SC and non-SC problems. Various experimental results on many real-world data sets verify that the proposed methods can achieve an average speedup of [Formula Omitted] in the SC case and [Formula Omitted] in the non-SC case over their loopy counterparts, respectively. |
| Author | Geng, Jiacheng Liu, Hongying Liu, Yuanyuan Shang, Fanhua An, Weixin Zhu, Qi |
| Author_xml | – sequence: 1 givenname: Yuanyuan surname: Liu fullname: Liu, Yuanyuan email: yyliu@xidian.edu.cn organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 2 givenname: Jiacheng orcidid: 0000-0002-5629-893X surname: Geng fullname: Geng, Jiacheng organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 3 givenname: Fanhua orcidid: 0000-0002-1040-352X surname: Shang fullname: Shang, Fanhua email: fhshang@xidian.edu.cn organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 4 givenname: Weixin surname: An fullname: An, Weixin organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 5 givenname: Hongying orcidid: 0000-0002-8475-2749 surname: Liu fullname: Liu, Hongying email: hyliu@xidian.edu.cn organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 6 givenname: Qi surname: Zhu fullname: Zhu, Qi organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China |
| BookMark | eNpNkEFPwjAUxxuDiYh8AOOliedh260rPRIExUAwil6brnuLJWMd7Xbg27sFYjy9d_j93_vnd4sGlasAoXtKJpQS-fS22u4mjDA6iYnkPKVXaMhiJqIkTdng336DxiHsCSFdjFOZDpFaO1eXEAL-1t7qygD-gLw1kOPPxpkfHRpr8Ox5s8GF83hxbHVpmxOeuyo0XtuqA9-9y0o4BGwrvHI7PKvr0hrd2I65Q9eFLgOML3OEvpaL3fw1Wm9fVvPZOjIs4U0kprGRnAFlCYBhRFLNDM8kLbquhcg0z2lXWhYctMhFkmcFyTLJKInT3EyTeIQez3dr744thEbtXeur7qViKWNTJojsKXqmjHcheChU7e1B-5OiRPUqVa9S9SrVRWWXeThnLAD88TIRIiY0_gWeNHDB |
| CODEN | IITJAU |
| Cites_doi | 10.1109/JIOT.2021.3058116 10.1609/aaai.v31i1.10843 10.1038/nature24270 10.24963/ijcai.2019/422 10.1007/s10915-010-9408-8 10.1093/bioinformatics/btp218 10.1007/s10107-014-0826-5 10.1109/TKDE.2021.3070539 10.1007/s12532-013-0053-8 10.1016/j.patcog.2012.07.003 10.1016/j.patcog.2019.106966 10.1016/j.patcog.2017.05.013 10.1109/TKDE.2018.2878765 10.1109/TPAMI.2016.2578323 10.5555/3045118.3045156 10.1145/2661829.2662083 10.1109/TPAMI.2020.3000512 10.1109/WF-IoT51360.2021.9595357 10.1214/aoms/1177729586 10.1561/9781601984616 10.1109/ACCESS.2018.2839675 10.1007/s10915-015-0048-x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2021.3095561 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 2303 |
| ExternalDocumentID | 10_1109_JIOT_2021_3095561 9477301 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) grantid: B07048 – fundername: National Science Basic Research Plan in Shaanxi Province of China grantid: 2020JM-194 – fundername: National Natural Science Foundation of China grantid: 61876221; 61876220; 61976164; 61836009; U1701267 funderid: 10.13039/501100001809 – fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China grantid: 61621005 funderid: 10.13039/501100001809 – fundername: Program for Cheung Kong Scholars and Innovative Research Team in University grantid: IRT–15R53 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-783c952e124eec2091a2c5b91f001f7ba5d10119f5ea7d74dbf0bb921036dc843 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747462100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Sun Nov 09 06:26:27 EST 2025 Sat Nov 29 06:16:59 EST 2025 Wed Aug 27 03:00:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-783c952e124eec2091a2c5b91f001f7ba5d10119f5ea7d74dbf0bb921036dc843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1040-352X 0000-0002-8475-2749 0000-0002-5629-893X |
| PQID | 2622827094 |
| PQPubID | 2040421 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2021_3095561 proquest_journals_2622827094 ieee_primary_9477301 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 Allen-Zhu (ref27) 2018; 18 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 Li (ref5) 2016 Johnson (ref12) Allen-Zhu (ref13) ref39 Qian (ref26) 2019 Suzuki (ref17) Ouyang (ref4) Wang (ref9) Zhao (ref36) 2015 Zhou (ref40) Zhong (ref21) Banerjee (ref38) 2008; 9 Wang (ref16) Zheng (ref23) ref24 ref20 Kovalev (ref25) ref42 ref43 ref28 Roux (ref18) Shang (ref41) ref29 ref8 ref7 Zhong (ref3) Shalev-Shwartz (ref19) 2013; 14 ref6 Suzuki (ref22) Azadi (ref37) |
| References_xml | – start-page: 699 volume-title: Proc. 33rd Int. Conf. Mach. Learn. (ICML) ident: ref13 article-title: Variance reduction for faster non-convex optimization – ident: ref33 doi: 10.1109/JIOT.2021.3058116 – ident: ref24 doi: 10.1609/aaai.v31i1.10843 – start-page: 80 volume-title: Proc. 30th Int. Conf. Mach. Learn. (ICML) ident: ref4 article-title: Stochastic alternating direction method of multipliers – start-page: 5975 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref40 article-title: A simple stochastic variance reduced algorithm with fast convergence rates – ident: ref1 doi: 10.1038/nature24270 – start-page: 392 volume-title: Proc. 30th Int. Conf. Mach. Learn. (ICML) ident: ref17 article-title: Dual averaging and proximal gradient descent for online alternating direction multiplier method – start-page: 2407 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. (IJCAI) ident: ref23 article-title: Fast-and-light stochastic ADMM – start-page: 2672 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref18 article-title: A stochastic gradient method with an exponential convergence rate for finite training sets – ident: ref42 doi: 10.24963/ijcai.2019/422 – volume-title: Scalable stochastic alternating direction method of multipliers year: 2015 ident: ref36 – ident: ref29 doi: 10.1007/s10915-010-9408-8 – start-page: 451 volume-title: Proc. 31st Int. Conf. Algorithmic Learn. Theory ident: ref25 article-title: Don’t jump through hoops and remove those loops: SVRG and Katyusha are better without the outer loop – start-page: 1027 volume-title: Proc. 21st Int. Conf. Artif. Intell. Stat. (AISTATS) ident: ref41 article-title: Guaranteed sufficient decrease for stochastic variance reduced gradient optimization – ident: ref39 doi: 10.1093/bioinformatics/btp218 – ident: ref43 doi: 10.1007/s10107-014-0826-5 – start-page: 3712 volume-title: Proc. 34th Int. Conf. Mach. Learn. (ICML) ident: ref9 article-title: A unified variance reduction-based framework for nonconvex low-rank matrix recovery – volume-title: L-SVRG and L-Katyusha with arbitrary sampling year: 2019 ident: ref26 – volume: 14 start-page: 567 year: 2013 ident: ref19 article-title: Stochastic dual coordinate ascent methods for regularized loss minimization publication-title: J. Mach. Learn. Res. – start-page: 1119 volume-title: Proc. 29th Int. Conf. Mach. Learn. (ICML) ident: ref16 article-title: Online alternating direction method – ident: ref28 doi: 10.1109/TKDE.2021.3070539 – ident: ref8 doi: 10.1007/s12532-013-0053-8 – volume-title: Nonconvex sparse learning via stochastic optimization with progressive variance reduction year: 2016 ident: ref5 – ident: ref11 doi: 10.1016/j.patcog.2012.07.003 – start-page: 315 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref12 article-title: Accelerating stochastic gradient descent using predictive variance reduction – start-page: 1086 volume-title: Proc. 17th Int. Conf. Artif. Intell. Stat. (AISTATS) ident: ref3 article-title: Accelerated stochastic gradient method for composite regularization – ident: ref7 doi: 10.1016/j.patcog.2019.106966 – ident: ref10 doi: 10.1016/j.patcog.2017.05.013 – volume: 18 start-page: 1 issue: 221 year: 2018 ident: ref27 article-title: Katyusha: The first direct acceleration of stochastic gradient methods publication-title: J. Mach. Learn. Res. – start-page: 620 volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML) ident: ref37 article-title: Towards an optimal stochastic alternating direction method of multipliers – ident: ref20 doi: 10.1109/TKDE.2018.2878765 – start-page: 46 volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML) ident: ref21 article-title: Fast stochastic alternating direction method of multipliers – ident: ref6 doi: 10.1109/TPAMI.2016.2578323 – ident: ref31 doi: 10.5555/3045118.3045156 – ident: ref30 doi: 10.1145/2661829.2662083 – ident: ref2 doi: 10.1109/TPAMI.2020.3000512 – ident: ref34 doi: 10.1109/WF-IoT51360.2021.9595357 – ident: ref15 doi: 10.1214/aoms/1177729586 – ident: ref14 doi: 10.1561/9781601984616 – start-page: 736 volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML) ident: ref22 article-title: Stochastic dual coordinate ascent with alternating direction method of multipliers – ident: ref35 doi: 10.1109/ACCESS.2018.2839675 – volume: 9 start-page: 485 year: 2008 ident: ref38 article-title: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data publication-title: J. Mach. Learn. Res. – ident: ref32 doi: 10.1007/s10915-015-0048-x |
| SSID | ssj0001105196 |
| Score | 2.2389128 |
| Snippet | The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2293 |
| SubjectTerms | Algorithms Alternating direction method of multipliers (ADMMs) Convergence Convex functions Internet of Things loopless algorithm Minimization momentum acceleration Optimization Optimization methods stochastic variance reduced gradient (SVRG) Training Upper bound Variance |
| Title | Loopless Variance Reduced Stochastic ADMM for Equality Constrained Problems in IoT Applications |
| URI | https://ieeexplore.ieee.org/document/9477301 https://www.proquest.com/docview/2622827094 |
| Volume | 9 |
| WOSCitedRecordID | wos000747462100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8QwDLaOEwMLb8TBgTIwIQpN-kgznniIQ7wEB2Kr8nAFS4toQeLfk6Q9HoKFLUMqVXYc-4vtzwA7TEtBpQ4DjLUI4kJioJjGIAoVooyLGI2nzD_nl5fZw4O47sHeZy8MIvriM9x3S5_LN5V-dU9lByLm7kDOwAznvO3V-npPoS4YSbvEJQ3Fwdn4amIBIKP7keNZS-kP1-Nnqfy6gL1XOVn43_8swnwXPZJRq-4l6GG5DAvTyQykM9QVyM8rVxhe1-TeYmGnWHLjOFrRkNum0o_SsTOT0dHFBbFBKzluWyvfiRvf6YdG2I3X7aiZmjyVZFxNyOhbqnsV7k6OJ4enQTdKIdAsTpqAZ5EWCUPrzRE1s0GCZDpRghZWcgVXMjHUsb8VCUpueGxUESolLB6MUqOzOFqDflmVuA7ERkSYyCzVplDW4GlmFEO70ikKwSkbwO5Uyvlzy5iRe6QRitypJHcqyTuVDGDFifVzYyfRAQynesk7m6pzljKLD7nFoxt_f7UJc8w1J_ia6iH0m5dX3IJZ_dY81S_b_rh8AC2iwHY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4BRYJLKQVEKLQ-9FSxYe31PnyMWlBSkjSCgHKz_JgVXLKIDUj8-9reDQ-VS28-eKXVjMczn2fmG4DvzChBlYkj5EZEvFQYaWYwSmKNqHjJ0QbK_GE-HhezmZiswPFzLwwihuIz7PplyOXbyjz4p7ITwXN_IFfhQ8o5o0231suLCvXhSNamLmksTn4P_kwdBGS0m3imtYy-cT5hmso_V3DwK2db__dHn-BjGz-SXqPwbVjB-WfYWs5mIK2p7oAcVr40vK7JtUPDXrXkwrO0oiWXi8rcKM_PTHq_RiPiwlZy2jRXPhE_wDOMjXAbJ82wmZrczsmgmpLeq2T3LlydnU5_9qN2mEJkGE8XUV4kRqQMnT9HNMyFCYqZVAtaOsmVuVappZ7_rUxR5TbnVpex1sIhwiSzpuDJHqzNqznuA3ExEaaqyIwttTN5WljN0K1MhkLklHXgx1LK8q7hzJABa8RCepVIrxLZqqQDO16szxtbiXbgcKkX2VpVLVnGHELMHSI9eP-rb7DRn46GcjgYn3-BTeZbFUKF9SGsLe4f8AjWzePitr7_Go7OX1u9w70 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loopless+Variance+Reduced+Stochastic+ADMM+for+Equality+Constrained+Problems+in+IoT+Applications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Liu%2C+Yuanyuan&rft.au=Geng%2C+Jiacheng&rft.au=Shang%2C+Fanhua&rft.au=An%2C+Weixin&rft.date=2022-02-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=9&rft.issue=3&rft.spage=2293&rft.epage=2303&rft_id=info:doi/10.1109%2FJIOT.2021.3095561&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3095561 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |