Loopless Variance Reduced Stochastic ADMM for Equality Constrained Problems in IoT Applications

The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE internet of things journal Ročník 9; číslo 3; s. 2293 - 2303
Hlavní autori: Liu, Yuanyuan, Geng, Jiacheng, Shang, Fanhua, An, Weixin, Liu, Hongying, Zhu, Qi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4662, 2327-4662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear convergence for strongly convex (SC) problems. However, SVRG-ADMM and its variants have an outer loop where the full gradient at the snapshot is computed, and their outer loop contains an inner loop, in which a large number of variance reduced gradients are estimated from random samples. This loopy design makes these methods more complex to analyze and determine the inner loop length, which must be proportional to the condition number to achieve best convergence, and is often set to <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> as a suboptimal choice, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the number of samples. To tackle these issues, we propose an efficient loopless variance reduced stochastic ADMM algorithm, called LVR-SADMM. In our LVR-SADMM, we remove the outer loop and replace it with a biased coin-flip, in which we update the snapshot with a small probability to trigger the full gradient computation. Moreover, we also theoretically analyze the convergence property of LVR-SADMM, which shows that it enjoys a fast linear convergence rate for SC problems. In particular, we also present an accelerated loopless SVRG-ADMM (LAVR-SADMM) method for both SC and non-SC problems. Various experimental results on many real-world data sets verify that the proposed methods can achieve an average speedup of <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> in the SC case and <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula> in the non-SC case over their loopy counterparts, respectively.
AbstractList The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear convergence for strongly convex (SC) problems. However, SVRG-ADMM and its variants have an outer loop where the full gradient at the snapshot is computed, and their outer loop contains an inner loop, in which a large number of variance reduced gradients are estimated from random samples. This loopy design makes these methods more complex to analyze and determine the inner loop length, which must be proportional to the condition number to achieve best convergence, and is often set to <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(n) </tex-math></inline-formula> as a suboptimal choice, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the number of samples. To tackle these issues, we propose an efficient loopless variance reduced stochastic ADMM algorithm, called LVR-SADMM. In our LVR-SADMM, we remove the outer loop and replace it with a biased coin-flip, in which we update the snapshot with a small probability to trigger the full gradient computation. Moreover, we also theoretically analyze the convergence property of LVR-SADMM, which shows that it enjoys a fast linear convergence rate for SC problems. In particular, we also present an accelerated loopless SVRG-ADMM (LAVR-SADMM) method for both SC and non-SC problems. Various experimental results on many real-world data sets verify that the proposed methods can achieve an average speedup of <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> in the SC case and <inline-formula> <tex-math notation="LaTeX">5\times </tex-math></inline-formula> in the non-SC case over their loopy counterparts, respectively.
The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things (IoT) applications. Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear convergence for strongly convex (SC) problems. However, SVRG-ADMM and its variants have an outer loop where the full gradient at the snapshot is computed, and their outer loop contains an inner loop, in which a large number of variance reduced gradients are estimated from random samples. This loopy design makes these methods more complex to analyze and determine the inner loop length, which must be proportional to the condition number to achieve best convergence, and is often set to [Formula Omitted] as a suboptimal choice, where [Formula Omitted] is the number of samples. To tackle these issues, we propose an efficient loopless variance reduced stochastic ADMM algorithm, called LVR-SADMM. In our LVR-SADMM, we remove the outer loop and replace it with a biased coin-flip, in which we update the snapshot with a small probability to trigger the full gradient computation. Moreover, we also theoretically analyze the convergence property of LVR-SADMM, which shows that it enjoys a fast linear convergence rate for SC problems. In particular, we also present an accelerated loopless SVRG-ADMM (LAVR-SADMM) method for both SC and non-SC problems. Various experimental results on many real-world data sets verify that the proposed methods can achieve an average speedup of [Formula Omitted] in the SC case and [Formula Omitted] in the non-SC case over their loopy counterparts, respectively.
Author Geng, Jiacheng
Liu, Hongying
Liu, Yuanyuan
Shang, Fanhua
An, Weixin
Zhu, Qi
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Liu
  fullname: Liu, Yuanyuan
  email: yyliu@xidian.edu.cn
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 2
  givenname: Jiacheng
  orcidid: 0000-0002-5629-893X
  surname: Geng
  fullname: Geng, Jiacheng
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 3
  givenname: Fanhua
  orcidid: 0000-0002-1040-352X
  surname: Shang
  fullname: Shang, Fanhua
  email: fhshang@xidian.edu.cn
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 4
  givenname: Weixin
  surname: An
  fullname: An, Weixin
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 5
  givenname: Hongying
  orcidid: 0000-0002-8475-2749
  surname: Liu
  fullname: Liu, Hongying
  email: hyliu@xidian.edu.cn
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 6
  givenname: Qi
  surname: Zhu
  fullname: Zhu, Qi
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
BookMark eNpNkEFPwjAUxxuDiYh8AOOliedh260rPRIExUAwil6brnuLJWMd7Xbg27sFYjy9d_j93_vnd4sGlasAoXtKJpQS-fS22u4mjDA6iYnkPKVXaMhiJqIkTdng336DxiHsCSFdjFOZDpFaO1eXEAL-1t7qygD-gLw1kOPPxpkfHRpr8Ox5s8GF83hxbHVpmxOeuyo0XtuqA9-9y0o4BGwrvHI7PKvr0hrd2I65Q9eFLgOML3OEvpaL3fw1Wm9fVvPZOjIs4U0kprGRnAFlCYBhRFLNDM8kLbquhcg0z2lXWhYctMhFkmcFyTLJKInT3EyTeIQez3dr744thEbtXeur7qViKWNTJojsKXqmjHcheChU7e1B-5OiRPUqVa9S9SrVRWWXeThnLAD88TIRIiY0_gWeNHDB
CODEN IITJAU
Cites_doi 10.1109/JIOT.2021.3058116
10.1609/aaai.v31i1.10843
10.1038/nature24270
10.24963/ijcai.2019/422
10.1007/s10915-010-9408-8
10.1093/bioinformatics/btp218
10.1007/s10107-014-0826-5
10.1109/TKDE.2021.3070539
10.1007/s12532-013-0053-8
10.1016/j.patcog.2012.07.003
10.1016/j.patcog.2019.106966
10.1016/j.patcog.2017.05.013
10.1109/TKDE.2018.2878765
10.1109/TPAMI.2016.2578323
10.5555/3045118.3045156
10.1145/2661829.2662083
10.1109/TPAMI.2020.3000512
10.1109/WF-IoT51360.2021.9595357
10.1214/aoms/1177729586
10.1561/9781601984616
10.1109/ACCESS.2018.2839675
10.1007/s10915-015-0048-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3095561
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 2303
ExternalDocumentID 10_1109_JIOT_2021_3095561
9477301
Genre orig-research
GrantInformation_xml – fundername: Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project)
  grantid: B07048
– fundername: National Science Basic Research Plan in Shaanxi Province of China
  grantid: 2020JM-194
– fundername: National Natural Science Foundation of China
  grantid: 61876221; 61876220; 61976164; 61836009; U1701267
  funderid: 10.13039/501100001809
– fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China
  grantid: 61621005
  funderid: 10.13039/501100001809
– fundername: Program for Cheung Kong Scholars and Innovative Research Team in University
  grantid: IRT–15R53
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-783c952e124eec2091a2c5b91f001f7ba5d10119f5ea7d74dbf0bb921036dc843
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747462100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Sun Nov 09 06:26:27 EST 2025
Sat Nov 29 06:16:59 EST 2025
Wed Aug 27 03:00:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-783c952e124eec2091a2c5b91f001f7ba5d10119f5ea7d74dbf0bb921036dc843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1040-352X
0000-0002-8475-2749
0000-0002-5629-893X
PQID 2622827094
PQPubID 2040421
PageCount 11
ParticipantIDs crossref_primary_10_1109_JIOT_2021_3095561
proquest_journals_2622827094
ieee_primary_9477301
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
Allen-Zhu (ref27) 2018; 18
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
Li (ref5) 2016
Johnson (ref12)
Allen-Zhu (ref13)
ref39
Qian (ref26) 2019
Suzuki (ref17)
Ouyang (ref4)
Wang (ref9)
Zhao (ref36) 2015
Zhou (ref40)
Zhong (ref21)
Banerjee (ref38) 2008; 9
Wang (ref16)
Zheng (ref23)
ref24
ref20
Kovalev (ref25)
ref42
ref43
ref28
Roux (ref18)
Shang (ref41)
ref29
ref8
ref7
Zhong (ref3)
Shalev-Shwartz (ref19) 2013; 14
ref6
Suzuki (ref22)
Azadi (ref37)
References_xml – start-page: 699
  volume-title: Proc. 33rd Int. Conf. Mach. Learn. (ICML)
  ident: ref13
  article-title: Variance reduction for faster non-convex optimization
– ident: ref33
  doi: 10.1109/JIOT.2021.3058116
– ident: ref24
  doi: 10.1609/aaai.v31i1.10843
– start-page: 80
  volume-title: Proc. 30th Int. Conf. Mach. Learn. (ICML)
  ident: ref4
  article-title: Stochastic alternating direction method of multipliers
– start-page: 5975
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref40
  article-title: A simple stochastic variance reduced algorithm with fast convergence rates
– ident: ref1
  doi: 10.1038/nature24270
– start-page: 392
  volume-title: Proc. 30th Int. Conf. Mach. Learn. (ICML)
  ident: ref17
  article-title: Dual averaging and proximal gradient descent for online alternating direction multiplier method
– start-page: 2407
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. (IJCAI)
  ident: ref23
  article-title: Fast-and-light stochastic ADMM
– start-page: 2672
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref18
  article-title: A stochastic gradient method with an exponential convergence rate for finite training sets
– ident: ref42
  doi: 10.24963/ijcai.2019/422
– volume-title: Scalable stochastic alternating direction method of multipliers
  year: 2015
  ident: ref36
– ident: ref29
  doi: 10.1007/s10915-010-9408-8
– start-page: 451
  volume-title: Proc. 31st Int. Conf. Algorithmic Learn. Theory
  ident: ref25
  article-title: Don’t jump through hoops and remove those loops: SVRG and Katyusha are better without the outer loop
– start-page: 1027
  volume-title: Proc. 21st Int. Conf. Artif. Intell. Stat. (AISTATS)
  ident: ref41
  article-title: Guaranteed sufficient decrease for stochastic variance reduced gradient optimization
– ident: ref39
  doi: 10.1093/bioinformatics/btp218
– ident: ref43
  doi: 10.1007/s10107-014-0826-5
– start-page: 3712
  volume-title: Proc. 34th Int. Conf. Mach. Learn. (ICML)
  ident: ref9
  article-title: A unified variance reduction-based framework for nonconvex low-rank matrix recovery
– volume-title: L-SVRG and L-Katyusha with arbitrary sampling
  year: 2019
  ident: ref26
– volume: 14
  start-page: 567
  year: 2013
  ident: ref19
  article-title: Stochastic dual coordinate ascent methods for regularized loss minimization
  publication-title: J. Mach. Learn. Res.
– start-page: 1119
  volume-title: Proc. 29th Int. Conf. Mach. Learn. (ICML)
  ident: ref16
  article-title: Online alternating direction method
– ident: ref28
  doi: 10.1109/TKDE.2021.3070539
– ident: ref8
  doi: 10.1007/s12532-013-0053-8
– volume-title: Nonconvex sparse learning via stochastic optimization with progressive variance reduction
  year: 2016
  ident: ref5
– ident: ref11
  doi: 10.1016/j.patcog.2012.07.003
– start-page: 315
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref12
  article-title: Accelerating stochastic gradient descent using predictive variance reduction
– start-page: 1086
  volume-title: Proc. 17th Int. Conf. Artif. Intell. Stat. (AISTATS)
  ident: ref3
  article-title: Accelerated stochastic gradient method for composite regularization
– ident: ref7
  doi: 10.1016/j.patcog.2019.106966
– ident: ref10
  doi: 10.1016/j.patcog.2017.05.013
– volume: 18
  start-page: 1
  issue: 221
  year: 2018
  ident: ref27
  article-title: Katyusha: The first direct acceleration of stochastic gradient methods
  publication-title: J. Mach. Learn. Res.
– start-page: 620
  volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML)
  ident: ref37
  article-title: Towards an optimal stochastic alternating direction method of multipliers
– ident: ref20
  doi: 10.1109/TKDE.2018.2878765
– start-page: 46
  volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML)
  ident: ref21
  article-title: Fast stochastic alternating direction method of multipliers
– ident: ref6
  doi: 10.1109/TPAMI.2016.2578323
– ident: ref31
  doi: 10.5555/3045118.3045156
– ident: ref30
  doi: 10.1145/2661829.2662083
– ident: ref2
  doi: 10.1109/TPAMI.2020.3000512
– ident: ref34
  doi: 10.1109/WF-IoT51360.2021.9595357
– ident: ref15
  doi: 10.1214/aoms/1177729586
– ident: ref14
  doi: 10.1561/9781601984616
– start-page: 736
  volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML)
  ident: ref22
  article-title: Stochastic dual coordinate ascent with alternating direction method of multipliers
– ident: ref35
  doi: 10.1109/ACCESS.2018.2839675
– volume: 9
  start-page: 485
  year: 2008
  ident: ref38
  article-title: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
  publication-title: J. Mach. Learn. Res.
– ident: ref32
  doi: 10.1007/s10915-015-0048-x
SSID ssj0001105196
Score 2.2389128
Snippet The alternating direction method of multipliers (ADMMs) is an efficient optimization method for solving equality constrained problems in Internet of Things...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2293
SubjectTerms Algorithms
Alternating direction method of multipliers (ADMMs)
Convergence
Convex functions
Internet of Things
loopless algorithm
Minimization
momentum acceleration
Optimization
Optimization methods
stochastic variance reduced gradient (SVRG)
Training
Upper bound
Variance
Title Loopless Variance Reduced Stochastic ADMM for Equality Constrained Problems in IoT Applications
URI https://ieeexplore.ieee.org/document/9477301
https://www.proquest.com/docview/2622827094
Volume 9
WOSCitedRecordID wos000747462100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8QwDLaOEwMLb8TBgTIwIQpN-kgznniIQ7wEB2Kr8nAFS4toQeLfk6Q9HoKFLUMqVXYc-4vtzwA7TEtBpQ4DjLUI4kJioJjGIAoVooyLGI2nzD_nl5fZw4O47sHeZy8MIvriM9x3S5_LN5V-dU9lByLm7kDOwAznvO3V-npPoS4YSbvEJQ3Fwdn4amIBIKP7keNZS-kP1-Nnqfy6gL1XOVn43_8swnwXPZJRq-4l6GG5DAvTyQykM9QVyM8rVxhe1-TeYmGnWHLjOFrRkNum0o_SsTOT0dHFBbFBKzluWyvfiRvf6YdG2I3X7aiZmjyVZFxNyOhbqnsV7k6OJ4enQTdKIdAsTpqAZ5EWCUPrzRE1s0GCZDpRghZWcgVXMjHUsb8VCUpueGxUESolLB6MUqOzOFqDflmVuA7ERkSYyCzVplDW4GlmFEO70ikKwSkbwO5Uyvlzy5iRe6QRitypJHcqyTuVDGDFifVzYyfRAQynesk7m6pzljKLD7nFoxt_f7UJc8w1J_ia6iH0m5dX3IJZ_dY81S_b_rh8AC2iwHY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4BRYJLKQVEKLQ-9FSxYe31PnyMWlBSkjSCgHKz_JgVXLKIDUj8-9reDQ-VS28-eKXVjMczn2fmG4DvzChBlYkj5EZEvFQYaWYwSmKNqHjJ0QbK_GE-HhezmZiswPFzLwwihuIz7PplyOXbyjz4p7ITwXN_IFfhQ8o5o0231suLCvXhSNamLmksTn4P_kwdBGS0m3imtYy-cT5hmso_V3DwK2db__dHn-BjGz-SXqPwbVjB-WfYWs5mIK2p7oAcVr40vK7JtUPDXrXkwrO0oiWXi8rcKM_PTHq_RiPiwlZy2jRXPhE_wDOMjXAbJ82wmZrczsmgmpLeq2T3LlydnU5_9qN2mEJkGE8XUV4kRqQMnT9HNMyFCYqZVAtaOsmVuVappZ7_rUxR5TbnVpex1sIhwiSzpuDJHqzNqznuA3ExEaaqyIwttTN5WljN0K1MhkLklHXgx1LK8q7hzJABa8RCepVIrxLZqqQDO16szxtbiXbgcKkX2VpVLVnGHELMHSI9eP-rb7DRn46GcjgYn3-BTeZbFUKF9SGsLe4f8AjWzePitr7_Go7OX1u9w70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loopless+Variance+Reduced+Stochastic+ADMM+for+Equality+Constrained+Problems+in+IoT+Applications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Liu%2C+Yuanyuan&rft.au=Geng%2C+Jiacheng&rft.au=Shang%2C+Fanhua&rft.au=An%2C+Weixin&rft.date=2022-02-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=9&rft.issue=3&rft.spage=2293&rft.epage=2303&rft_id=info:doi/10.1109%2FJIOT.2021.3095561&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3095561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon