An Enhanced Regularized Clustering Method With Adaptive Spurious Connection Detection

The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the prior knowledge of the number of clusters. Although the ground truth connections and weights among samples are beneficial for clustering, the per...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters Vol. 30; pp. 1332 - 1336
Main Authors: Chen, Huangyue, Kong, Lingchen, Qu, Wentao, Xiu, Xianchao
Format: Journal Article
Language:English
Published: New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1070-9908, 1558-2361
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the prior knowledge of the number of clusters. Although the ground truth connections and weights among samples are beneficial for clustering, the performance of RC could be distorted by the omnipresent spurious connections in real-world data sets. To effectively address the issue, this letter constructs an enhanced regularized clustering model by incorporating a spurious connection detection mechanism into the objective function of the RC framework. The proposed model can effectively reduce the damage caused by spurious connections through adaptively identifying the importance of each connection. Furthermore, an alternating minimization algorithm is developed with detailed convergence analysis. Experimental results validate its effectiveness against several state-of-the-art RC methods.
AbstractList The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the prior knowledge of the number of clusters. Although the ground truth connections and weights among samples are beneficial for clustering, the performance of RC could be distorted by the omnipresent spurious connections in real-world data sets. To effectively address the issue, this letter constructs an enhanced regularized clustering model by incorporating a spurious connection detection mechanism into the objective function of the RC framework. The proposed model can effectively reduce the damage caused by spurious connections through adaptively identifying the importance of each connection. Furthermore, an alternating minimization algorithm is developed with detailed convergence analysis. Experimental results validate its effectiveness against several state-of-the-art RC methods.
Author Kong, Lingchen
Xiu, Xianchao
Qu, Wentao
Chen, Huangyue
Author_xml – sequence: 1
  givenname: Huangyue
  orcidid: 0000-0002-7002-5938
  surname: Chen
  fullname: Chen, Huangyue
  email: hychen2022@amss.ac.cn
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Lingchen
  orcidid: 0000-0002-9168-6145
  surname: Kong
  fullname: Kong, Lingchen
  email: lchkong@bjtu.edu.cn
  organization: School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Wentao
  orcidid: 0000-0001-8102-3199
  surname: Qu
  fullname: Qu, Wentao
  email: wtqu96@bjtu.edu.cn
  organization: School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Xianchao
  orcidid: 0000-0002-3374-7413
  surname: Xiu
  fullname: Xiu, Xianchao
  email: xcxiu@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
BookMark eNpNkD1PwzAYhC0EEm1hZ2CwxJzijzixxyqUD6kIRKkYI9dxWlfFDraDBL8eV-nAdDfc3fvqGYNT66wG4AqjKcZI3C6Wr1OCCJ1SioukJ2CEGeMZoQU-TR6VKBMC8XMwDmGHEOKYsxFYzSyc2620SjfwTW_6vfTmN_lq34eovbEb-Kzj1jXww8QtnDWyi-Zbw2XXe-P6ACtnrVbROAvvdBzcBThr5T7oy6NOwOp-_l49ZouXh6dqtsgUyVnMCoUlwxSXTVmsiUSsUDIv-VriQqZ_VNvkSNCSSaawxoI3grQ51WWbcyVKxugE3Ay7nXdfvQ6x3rne23SyJrwQlAqKSUqhIaW8C8Hrtu68-ZT-p8aoPsCrE7z6AK8-wkuV66FitNb_4oQRlCP6B8SRbKY
CODEN ISPLEM
Cites_doi 10.1137/18M121099X
10.1080/10618600.2017.1377081
10.1109/LSP.2018.2839022
10.1109/CVPR.2019.00446
10.1109/TCYB.2016.2546965
10.1609/aaai.v30i1.10302
10.1109/LSP.2016.2573159
10.1016/j.neucom.2020.01.058
10.1016/j.ejor.2020.09.010
10.1093/bioinformatics/bti140
10.1080/10618600.2014.948181
10.1007/s11222-007-9033-z
10.1016/j.patcog.2022.108689
10.2307/2284239
10.3390/math11020436
10.1145/276304.276314
10.1093/comnet/cnz007
10.1214/14-EJS934
10.1109/LSP.2022.3217441
10.1109/DSLW51110.2021.9523411
10.1109/TIT.1982.1056489
10.5555/2980539.2980649
10.1073/pnas.1700770114
10.1007/s11590-017-1152-7
10.1214/15-EJS1074
10.1007/bf02289588
10.1016/j.engappai.2022.104743
10.1155/2020/9216351
10.1109/TCYB.2017.2751646
10.1109/SSP.2011.5967659
10.1080/00949655.2019.1700986
10.1016/j.physleta.2014.06.011
10.1111/rssb.12226
10.1007/978-3-031-02406-1
10.1007/BF00131148
10.1016/0306-4573(89)90048-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2023.3316023
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1336
ExternalDocumentID 10_1109_LSP_2023_3316023
10252040
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2022M723327
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 12071022; 12371306; 12001019
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-6c1a51317d76b2a056ca478ba16acedcfd409375a5c1e198d92f43e7f48c97553
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076855900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Sun Nov 09 08:55:33 EST 2025
Sat Nov 29 03:38:54 EST 2025
Wed Aug 27 02:50:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-6c1a51317d76b2a056ca478ba16acedcfd409375a5c1e198d92f43e7f48c97553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3374-7413
0000-0002-7002-5938
0000-0002-9168-6145
0000-0001-8102-3199
PQID 2869339312
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_2869339312
crossref_primary_10_1109_LSP_2023_3316023
ieee_primary_10252040
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref37
ref14
Zhu (ref17) 2014
ref36
ref31
ref30
ref11
ref33
ref10
Pan (ref27) 2013; 14
ref32
Jiang (ref20) 2020; 21
ref1
ref39
Tasoulis (ref44) 2020; 107
ref38
ref19
Sun (ref16) 2021; 22
Gionis (ref43) 2007; 1
Wu (ref28) 2016; 17
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref42
ref41
ref22
ref21
Hocking (ref13) 2011
Panahi (ref18) 2017
Macqueen (ref2) 1967
Pelckmans (ref12) 2005
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref19
  doi: 10.1137/18M121099X
– ident: ref25
  doi: 10.1080/10618600.2017.1377081
– ident: ref5
  doi: 10.1109/LSP.2018.2839022
– ident: ref36
  doi: 10.1109/CVPR.2019.00446
– start-page: 745
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  year: 2011
  ident: ref13
  article-title: Clusterpath: An algorithm for clustering using convex fusion penalties
– start-page: 1619
  volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst.
  year: 2014
  ident: ref17
  article-title: Convex optimization procedure for clustering: Theoretical revisit
– start-page: 2769
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  year: 2017
  ident: ref18
  article-title: Clustering by sum of norms: Stochastic incremental algorithm, convergence and cluster recovery
– ident: ref31
  doi: 10.1109/TCYB.2016.2546965
– ident: ref42
  doi: 10.1609/aaai.v30i1.10302
– ident: ref10
  doi: 10.1109/LSP.2016.2573159
– ident: ref32
  doi: 10.1016/j.neucom.2020.01.058
– ident: ref24
  doi: 10.1016/j.ejor.2020.09.010
– ident: ref37
  doi: 10.1093/bioinformatics/bti140
– ident: ref15
  doi: 10.1080/10618600.2014.948181
– ident: ref7
  doi: 10.1007/s11222-007-9033-z
– ident: ref33
  doi: 10.1016/j.patcog.2022.108689
– ident: ref45
  doi: 10.2307/2284239
– ident: ref11
  doi: 10.3390/math11020436
– volume: 14
  start-page: 1865
  year: 2013
  ident: ref27
  article-title: Cluster analysis: Unsupervised learning via supervised learning with a nonconvex penalty
  publication-title: J. Mach. Learn. Res.
– ident: ref9
  doi: 10.1145/276304.276314
– ident: ref39
  doi: 10.1093/comnet/cnz007
– ident: ref29
  doi: 10.1214/14-EJS934
– ident: ref8
  doi: 10.1109/LSP.2022.3217441
– ident: ref23
  doi: 10.1109/DSLW51110.2021.9523411
– ident: ref3
  doi: 10.1109/TIT.1982.1056489
– ident: ref6
  doi: 10.5555/2980539.2980649
– ident: ref34
  doi: 10.1073/pnas.1700770114
– ident: ref35
  doi: 10.1007/s11590-017-1152-7
– ident: ref21
  doi: 10.1214/15-EJS1074
– ident: ref4
  doi: 10.1007/bf02289588
– ident: ref1
  doi: 10.1016/j.engappai.2022.104743
– start-page: 281
  volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probability
  year: 1967
  ident: ref2
  article-title: Some methods for classification and analysis of multivariate observations
– ident: ref26
  doi: 10.1155/2020/9216351
– volume: 1
  start-page: 1
  volume-title: ACM Trans. Knowl. Discov. D.
  year: 2007
  ident: ref43
  article-title: Clustering aggregation
– volume: 107
  volume-title: Pattern Recognit.
  year: 2020
  ident: ref44
  article-title: Nonlinear dimensionality reduction for clustering
– ident: ref47
  doi: 10.1109/TCYB.2017.2751646
– start-page: 1
  volume-title: Proc. PASCAL Workshop Statist. Optim. Clustering Workshop
  year: 2005
  ident: ref12
  article-title: Convex clustering shrinkage
– ident: ref14
  doi: 10.1109/SSP.2011.5967659
– ident: ref30
  doi: 10.1080/00949655.2019.1700986
– volume: 22
  start-page: 1
  year: 2021
  ident: ref16
  article-title: Convex clustering: Model, theoretical guarantee and efficient algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 1
  year: 2016
  ident: ref28
  article-title: A new algorithm and theory for penalized regression-based clustering
  publication-title: J. Mach. Learn. Res.
– ident: ref38
  doi: 10.1016/j.physleta.2014.06.011
– ident: ref22
  doi: 10.1111/rssb.12226
– ident: ref41
  doi: 10.1007/978-3-031-02406-1
– volume: 21
  start-page: 1
  year: 2020
  ident: ref20
  article-title: Recovery of a mixture of Gaussians by sum-of-norms clustering
  publication-title: J. Mach. Learn. Res.
– ident: ref40
  doi: 10.1007/BF00131148
– ident: ref46
  doi: 10.1016/0306-4573(89)90048-4
SSID ssj0008185
Score 2.3768208
Snippet The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1332
SubjectTerms Algorithms
Alternating minimization algorithm
Clustering
Clustering algorithms
Convergence
fusion penalty
Linear programming
Minimization
Monitoring
Optimization
regularized clustering
Signal processing algorithms
spurious connections
Title An Enhanced Regularized Clustering Method With Adaptive Spurious Connection Detection
URI https://ieeexplore.ieee.org/document/10252040
https://www.proquest.com/docview/2869339312
Volume 30
WOSCitedRecordID wos001076855900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxQADZxGFgjywMKQ4dmzHY1WKGEpVUQrdosR21EoordKEgV-P7aSoCDGwvcE59D6_w34XADcIiyCRBgGkReAFWhqRIirwkDT-BhWIajfu7XXIR6NwNhPjuljd1cJorV3yme5a0sXy1VKW9qrMSDim2Oy6BmhwzqpirW-1ay1PlWCIPKNiw01MEom74WTctWPCu4T4DGHywwa5oSq_NLEzLw-H__yxI3BQ-5GwVwF_DHZ0dgL2t7oLnoJpL4ODbO5C_PDZzZzPF5-G7r-Xtj2CWQSf3ABp-LYo5rCn4pVVfnCyKnObGgtdFowrfID3uqioFpg-DF76j149RcGTOKCFx6QfU9-4CYqzBMfG4ZFxwMMk9llsvi9TZY54hNOYSl_7IlQCpwHRPA1CKTil5Aw0s2WmzwGkPMFYYSRxmBhZx0nIEE-F8rWOmaKsDW43fI1WVbOMyB0ykIgMBpHFIKoxaIOW5ePWuoqFbdDZIBHV4rSOcMgEIYL4-OKPxy7Bnn17dTnSAc0iL_UV2JUfxWKdX7ud8gXFdLqj
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGnkUUCnhgYUhx_EjisSqtQJSq4tktSmxHVEKhalMGfj22kyIQYmC7wZGjO9_DvscHcIaJYKk0EsBaMI9paVSKKuZhaeINLjDXDu7tqR8OBtFoJIZVs7rrhdFau-Iz3bKky-WrNzm3T2VGwwkn5tQtwwpnjOCyXevL8FrfU5YYYs8Y2WiRlcTion8_bFmg8BalfoAJ_eGFHKzKL1vsHExv65-_tg2bVSSJ2qXod2BJ57uw8W2-4B48tnPUzV9ckh_dOdT56fjD0J3XuR2QYBahWwchjZ7HxQtqq2RizR-6n8yntjgWuToY1_qALnVRUnV47HUfOldehaPgScJ44QXST7hvAgUVBilJTMgjExZGaeIHidlfZspc8mjIEy597YtICZIxqsOMRVKEnNN9qOVvuT4AxMOUEEWwJFFqtJ2kUYDDTChf6yRQPGjA-YKv8aQclxG7awYWsZFBbGUQVzJoQN3y8du6koUNaC4kEVcKNYtJFAhKBfXJ4R-fncLa1cNtP-5fD26OYN3uVD6VNKFWTOf6GFblezGeTU_cqfkEqCC96g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Regularized+Clustering+Method+With+Adaptive+Spurious+Connection+Detection&rft.jtitle=IEEE+signal+processing+letters&rft.au=Chen%2C+Huangyue&rft.au=Kong%2C+Lingchen&rft.au=Qu%2C+Wentao&rft.au=Xiu%2C+Xianchao&rft.date=2023&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=30&rft.spage=1332&rft.epage=1336&rft_id=info:doi/10.1109%2FLSP.2023.3316023&rft.externalDocID=10252040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon