An Enhanced Regularized Clustering Method With Adaptive Spurious Connection Detection
The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the prior knowledge of the number of clusters. Although the ground truth connections and weights among samples are beneficial for clustering, the per...
Saved in:
| Published in: | IEEE signal processing letters Vol. 30; pp. 1332 - 1336 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1070-9908, 1558-2361 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the prior knowledge of the number of clusters. Although the ground truth connections and weights among samples are beneficial for clustering, the performance of RC could be distorted by the omnipresent spurious connections in real-world data sets. To effectively address the issue, this letter constructs an enhanced regularized clustering model by incorporating a spurious connection detection mechanism into the objective function of the RC framework. The proposed model can effectively reduce the damage caused by spurious connections through adaptively identifying the importance of each connection. Furthermore, an alternating minimization algorithm is developed with detailed convergence analysis. Experimental results validate its effectiveness against several state-of-the-art RC methods. |
|---|---|
| AbstractList | The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the prior knowledge of the number of clusters. Although the ground truth connections and weights among samples are beneficial for clustering, the performance of RC could be distorted by the omnipresent spurious connections in real-world data sets. To effectively address the issue, this letter constructs an enhanced regularized clustering model by incorporating a spurious connection detection mechanism into the objective function of the RC framework. The proposed model can effectively reduce the damage caused by spurious connections through adaptively identifying the importance of each connection. Furthermore, an alternating minimization algorithm is developed with detailed convergence analysis. Experimental results validate its effectiveness against several state-of-the-art RC methods. |
| Author | Kong, Lingchen Xiu, Xianchao Qu, Wentao Chen, Huangyue |
| Author_xml | – sequence: 1 givenname: Huangyue orcidid: 0000-0002-7002-5938 surname: Chen fullname: Chen, Huangyue email: hychen2022@amss.ac.cn organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Lingchen orcidid: 0000-0002-9168-6145 surname: Kong fullname: Kong, Lingchen email: lchkong@bjtu.edu.cn organization: School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Wentao orcidid: 0000-0001-8102-3199 surname: Qu fullname: Qu, Wentao email: wtqu96@bjtu.edu.cn organization: School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Xianchao orcidid: 0000-0002-3374-7413 surname: Xiu fullname: Xiu, Xianchao email: xcxiu@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China |
| BookMark | eNpNkD1PwzAYhC0EEm1hZ2CwxJzijzixxyqUD6kIRKkYI9dxWlfFDraDBL8eV-nAdDfc3fvqGYNT66wG4AqjKcZI3C6Wr1OCCJ1SioukJ2CEGeMZoQU-TR6VKBMC8XMwDmGHEOKYsxFYzSyc2620SjfwTW_6vfTmN_lq34eovbEb-Kzj1jXww8QtnDWyi-Zbw2XXe-P6ACtnrVbROAvvdBzcBThr5T7oy6NOwOp-_l49ZouXh6dqtsgUyVnMCoUlwxSXTVmsiUSsUDIv-VriQqZ_VNvkSNCSSaawxoI3grQ51WWbcyVKxugE3Ay7nXdfvQ6x3rne23SyJrwQlAqKSUqhIaW8C8Hrtu68-ZT-p8aoPsCrE7z6AK8-wkuV66FitNb_4oQRlCP6B8SRbKY |
| CODEN | ISPLEM |
| Cites_doi | 10.1137/18M121099X 10.1080/10618600.2017.1377081 10.1109/LSP.2018.2839022 10.1109/CVPR.2019.00446 10.1109/TCYB.2016.2546965 10.1609/aaai.v30i1.10302 10.1109/LSP.2016.2573159 10.1016/j.neucom.2020.01.058 10.1016/j.ejor.2020.09.010 10.1093/bioinformatics/bti140 10.1080/10618600.2014.948181 10.1007/s11222-007-9033-z 10.1016/j.patcog.2022.108689 10.2307/2284239 10.3390/math11020436 10.1145/276304.276314 10.1093/comnet/cnz007 10.1214/14-EJS934 10.1109/LSP.2022.3217441 10.1109/DSLW51110.2021.9523411 10.1109/TIT.1982.1056489 10.5555/2980539.2980649 10.1073/pnas.1700770114 10.1007/s11590-017-1152-7 10.1214/15-EJS1074 10.1007/bf02289588 10.1016/j.engappai.2022.104743 10.1155/2020/9216351 10.1109/TCYB.2017.2751646 10.1109/SSP.2011.5967659 10.1080/00949655.2019.1700986 10.1016/j.physleta.2014.06.011 10.1111/rssb.12226 10.1007/978-3-031-02406-1 10.1007/BF00131148 10.1016/0306-4573(89)90048-4 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LSP.2023.3316023 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2361 |
| EndPage | 1336 |
| ExternalDocumentID | 10_1109_LSP_2023_3316023 10252040 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2022M723327 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 12071022; 12371306; 12001019 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-6c1a51317d76b2a056ca478ba16acedcfd409375a5c1e198d92f43e7f48c97553 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076855900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1070-9908 |
| IngestDate | Sun Nov 09 08:55:33 EST 2025 Sat Nov 29 03:38:54 EST 2025 Wed Aug 27 02:50:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-6c1a51317d76b2a056ca478ba16acedcfd409375a5c1e198d92f43e7f48c97553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3374-7413 0000-0002-7002-5938 0000-0002-9168-6145 0000-0001-8102-3199 |
| PQID | 2869339312 |
| PQPubID | 75747 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2869339312 crossref_primary_10_1109_LSP_2023_3316023 ieee_primary_10252040 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE signal processing letters |
| PublicationTitleAbbrev | LSP |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref15 ref37 ref14 Zhu (ref17) 2014 ref36 ref31 ref30 ref11 ref33 ref10 Pan (ref27) 2013; 14 ref32 Jiang (ref20) 2020; 21 ref1 ref39 Tasoulis (ref44) 2020; 107 ref38 ref19 Sun (ref16) 2021; 22 Gionis (ref43) 2007; 1 Wu (ref28) 2016; 17 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref42 ref41 ref22 ref21 Hocking (ref13) 2011 Panahi (ref18) 2017 Macqueen (ref2) 1967 Pelckmans (ref12) 2005 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref19 doi: 10.1137/18M121099X – ident: ref25 doi: 10.1080/10618600.2017.1377081 – ident: ref5 doi: 10.1109/LSP.2018.2839022 – ident: ref36 doi: 10.1109/CVPR.2019.00446 – start-page: 745 volume-title: Proc. 28th Int. Conf. Mach. Learn. year: 2011 ident: ref13 article-title: Clusterpath: An algorithm for clustering using convex fusion penalties – start-page: 1619 volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst. year: 2014 ident: ref17 article-title: Convex optimization procedure for clustering: Theoretical revisit – start-page: 2769 volume-title: Proc. 34th Int. Conf. Mach. Learn. year: 2017 ident: ref18 article-title: Clustering by sum of norms: Stochastic incremental algorithm, convergence and cluster recovery – ident: ref31 doi: 10.1109/TCYB.2016.2546965 – ident: ref42 doi: 10.1609/aaai.v30i1.10302 – ident: ref10 doi: 10.1109/LSP.2016.2573159 – ident: ref32 doi: 10.1016/j.neucom.2020.01.058 – ident: ref24 doi: 10.1016/j.ejor.2020.09.010 – ident: ref37 doi: 10.1093/bioinformatics/bti140 – ident: ref15 doi: 10.1080/10618600.2014.948181 – ident: ref7 doi: 10.1007/s11222-007-9033-z – ident: ref33 doi: 10.1016/j.patcog.2022.108689 – ident: ref45 doi: 10.2307/2284239 – ident: ref11 doi: 10.3390/math11020436 – volume: 14 start-page: 1865 year: 2013 ident: ref27 article-title: Cluster analysis: Unsupervised learning via supervised learning with a nonconvex penalty publication-title: J. Mach. Learn. Res. – ident: ref9 doi: 10.1145/276304.276314 – ident: ref39 doi: 10.1093/comnet/cnz007 – ident: ref29 doi: 10.1214/14-EJS934 – ident: ref8 doi: 10.1109/LSP.2022.3217441 – ident: ref23 doi: 10.1109/DSLW51110.2021.9523411 – ident: ref3 doi: 10.1109/TIT.1982.1056489 – ident: ref6 doi: 10.5555/2980539.2980649 – ident: ref34 doi: 10.1073/pnas.1700770114 – ident: ref35 doi: 10.1007/s11590-017-1152-7 – ident: ref21 doi: 10.1214/15-EJS1074 – ident: ref4 doi: 10.1007/bf02289588 – ident: ref1 doi: 10.1016/j.engappai.2022.104743 – start-page: 281 volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probability year: 1967 ident: ref2 article-title: Some methods for classification and analysis of multivariate observations – ident: ref26 doi: 10.1155/2020/9216351 – volume: 1 start-page: 1 volume-title: ACM Trans. Knowl. Discov. D. year: 2007 ident: ref43 article-title: Clustering aggregation – volume: 107 volume-title: Pattern Recognit. year: 2020 ident: ref44 article-title: Nonlinear dimensionality reduction for clustering – ident: ref47 doi: 10.1109/TCYB.2017.2751646 – start-page: 1 volume-title: Proc. PASCAL Workshop Statist. Optim. Clustering Workshop year: 2005 ident: ref12 article-title: Convex clustering shrinkage – ident: ref14 doi: 10.1109/SSP.2011.5967659 – ident: ref30 doi: 10.1080/00949655.2019.1700986 – volume: 22 start-page: 1 year: 2021 ident: ref16 article-title: Convex clustering: Model, theoretical guarantee and efficient algorithm publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 1 year: 2016 ident: ref28 article-title: A new algorithm and theory for penalized regression-based clustering publication-title: J. Mach. Learn. Res. – ident: ref38 doi: 10.1016/j.physleta.2014.06.011 – ident: ref22 doi: 10.1111/rssb.12226 – ident: ref41 doi: 10.1007/978-3-031-02406-1 – volume: 21 start-page: 1 year: 2020 ident: ref20 article-title: Recovery of a mixture of Gaussians by sum-of-norms clustering publication-title: J. Mach. Learn. Res. – ident: ref40 doi: 10.1007/BF00131148 – ident: ref46 doi: 10.1016/0306-4573(89)90048-4 |
| SSID | ssj0008185 |
| Score | 2.3768208 |
| Snippet | The regularized clustering (RC) framework based on the fusion penalty has attracted extensive attention in the last decade because it does not require the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1332 |
| SubjectTerms | Algorithms Alternating minimization algorithm Clustering Clustering algorithms Convergence fusion penalty Linear programming Minimization Monitoring Optimization regularized clustering Signal processing algorithms spurious connections |
| Title | An Enhanced Regularized Clustering Method With Adaptive Spurious Connection Detection |
| URI | https://ieeexplore.ieee.org/document/10252040 https://www.proquest.com/docview/2869339312 |
| Volume | 30 |
| WOSCitedRecordID | wos001076855900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxQADZxGFgjywMKQ4dmzHY1WKGEpVUQrdosR21EoordKEgV-P7aSoCDGwvcE59D6_w34XADcIiyCRBgGkReAFWhqRIirwkDT-BhWIajfu7XXIR6NwNhPjuljd1cJorV3yme5a0sXy1VKW9qrMSDim2Oy6BmhwzqpirW-1ay1PlWCIPKNiw01MEom74WTctWPCu4T4DGHywwa5oSq_NLEzLw-H__yxI3BQ-5GwVwF_DHZ0dgL2t7oLnoJpL4ODbO5C_PDZzZzPF5-G7r-Xtj2CWQSf3ABp-LYo5rCn4pVVfnCyKnObGgtdFowrfID3uqioFpg-DF76j149RcGTOKCFx6QfU9-4CYqzBMfG4ZFxwMMk9llsvi9TZY54hNOYSl_7IlQCpwHRPA1CKTil5Aw0s2WmzwGkPMFYYSRxmBhZx0nIEE-F8rWOmaKsDW43fI1WVbOMyB0ykIgMBpHFIKoxaIOW5ePWuoqFbdDZIBHV4rSOcMgEIYL4-OKPxy7Bnn17dTnSAc0iL_UV2JUfxWKdX7ud8gXFdLqj |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGnkUUCnhgYUhx_EjisSqtQJSq4tktSmxHVEKhalMGfj22kyIQYmC7wZGjO9_DvscHcIaJYKk0EsBaMI9paVSKKuZhaeINLjDXDu7tqR8OBtFoJIZVs7rrhdFau-Iz3bKky-WrNzm3T2VGwwkn5tQtwwpnjOCyXevL8FrfU5YYYs8Y2WiRlcTion8_bFmg8BalfoAJ_eGFHKzKL1vsHExv65-_tg2bVSSJ2qXod2BJ57uw8W2-4B48tnPUzV9ckh_dOdT56fjD0J3XuR2QYBahWwchjZ7HxQtqq2RizR-6n8yntjgWuToY1_qALnVRUnV47HUfOldehaPgScJ44QXST7hvAgUVBilJTMgjExZGaeIHidlfZspc8mjIEy597YtICZIxqsOMRVKEnNN9qOVvuT4AxMOUEEWwJFFqtJ2kUYDDTChf6yRQPGjA-YKv8aQclxG7awYWsZFBbGUQVzJoQN3y8du6koUNaC4kEVcKNYtJFAhKBfXJ4R-fncLa1cNtP-5fD26OYN3uVD6VNKFWTOf6GFblezGeTU_cqfkEqCC96g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Regularized+Clustering+Method+With+Adaptive+Spurious+Connection+Detection&rft.jtitle=IEEE+signal+processing+letters&rft.au=Chen%2C+Huangyue&rft.au=Kong%2C+Lingchen&rft.au=Qu%2C+Wentao&rft.au=Xiu%2C+Xianchao&rft.date=2023&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=30&rft.spage=1332&rft.epage=1336&rft_id=info:doi/10.1109%2FLSP.2023.3316023&rft.externalDocID=10252040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |