Plug'n Play Task-Level Autonomy for Robotics Using POMDPs and Probabilistic Programs

We describe AOS, the first general-purpose system for model-based control of autonomous robots using AI planning that fully supports partial observability and noisy sensing. The AOS provides a code-based language for specifying a generative model of the system, making model specification easier and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 9; no. 1; pp. 587 - 594
Main Authors: Wertheim, Or, Suissa, Dan R., Brafman, Ronen I.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe AOS, the first general-purpose system for model-based control of autonomous robots using AI planning that fully supports partial observability and noisy sensing. The AOS provides a code-based language for specifying a generative model of the system, making model specification easier and model sampling efficient. It provides a language for specifying the relation between the model and the code, using which it auto-generates all required integration code. This allows Plug'n Play behavior, which facilitates incremental and modular system design. Extensive experiments on real and simulated robotic platforms demonstrate these advantages.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2023.3334682