A Tree-Based World Model for Reducing System Complexity in Autonomous Mobile Manipulation

Mobile manipulation tasks in unstructured environments remain challenging for autonomous robots. The need to employ a diverse set of software and hardware components to solve the various subtasks inevitably increases system complexity. Knowledge exchange among such diverse components renders them hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 9; H. 7; S. 6680 - 6687
Hauptverfasser: Sakagami, Ryo, Domel, Andreas, Lehner, Peter, Riedel, Sebastian, Brunner, Sebastian G., Albu-Schaffer, Alin, Stulp, Freek
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mobile manipulation tasks in unstructured environments remain challenging for autonomous robots. The need to employ a diverse set of software and hardware components to solve the various subtasks inevitably increases system complexity. Knowledge exchange among such diverse components renders them highly coupled, reduces communication efficiency, and makes the knowledge less accessible. To overcome these challenges, we propose AIMM-WM, a central world model as a single source of truth having an abstracted geometric tree structure. Despite its concise, efficient state representation, AIMM-WM is able to provide a wide range of information from low-level geometries to highly abstracted symbols and is interfaced with diverse components for navigation, motion planning, perception, decision-making, and mission control. We evaluate the performance of AIMM-WM from the real use case of our Lightweight Rover Unit during the four-week Moon-analogue demo mission on Mt. Etna, Italy.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2024.3410156