Masked Multiple State Space Model Identification Using FRD and Evolutionary Optimization

Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector conta...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 20; číslo 7; s. 9861 - 9869
Hlavní autori: Efe, Mehmet Onder, Kurkcu, Burak, Kasnakoglu, Cosku, Mohamed, Zaharuddin, Liu, Zhijie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector containing <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> quadruple's numerical content and a FRD-associated mask vector set that approximates the spectral information available in each FRD set? This article proposes a genetic algorithm based optimization approach to determine the real parameter vector <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> and the binary mask vector through a sequential optimization scheme. We study state space models for matching FRD from multiple systems. Results show that the proposed optimization approach solves the problem and compresses multiple dynamical models into a single masked one.
AbstractList Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector containing [Formula Omitted] quadruple's numerical content and a FRD-associated mask vector set that approximates the spectral information available in each FRD set? This article proposes a genetic algorithm based optimization approach to determine the real parameter vector [Formula Omitted] and the binary mask vector through a sequential optimization scheme. We study state space models for matching FRD from multiple systems. Results show that the proposed optimization approach solves the problem and compresses multiple dynamical models into a single masked one.
Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector containing <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> quadruple's numerical content and a FRD-associated mask vector set that approximates the spectral information available in each FRD set? This article proposes a genetic algorithm based optimization approach to determine the real parameter vector <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> and the binary mask vector through a sequential optimization scheme. We study state space models for matching FRD from multiple systems. Results show that the proposed optimization approach solves the problem and compresses multiple dynamical models into a single masked one.
Author Liu, Zhijie
Kurkcu, Burak
Efe, Mehmet Onder
Kasnakoglu, Cosku
Mohamed, Zaharuddin
Author_xml – sequence: 1
  givenname: Mehmet Onder
  orcidid: 0000-0002-5992-895X
  surname: Efe
  fullname: Efe, Mehmet Onder
  email: onderefe@hacettepe.edu.tr
  organization: Department of Computer Engineering, Hacettepe University, Ankara, Türkiye
– sequence: 2
  givenname: Burak
  orcidid: 0000-0002-0828-4234
  surname: Kurkcu
  fullname: Kurkcu, Burak
  email: bkurkcu@berkeley.edu
  organization: Department of Mechanical Engineering, University of California, Berkeley, CA, USA
– sequence: 3
  givenname: Cosku
  orcidid: 0000-0002-9928-727X
  surname: Kasnakoglu
  fullname: Kasnakoglu, Cosku
  email: kasnakoglu@etu.edu.tr
  organization: Electrical and Electronics Engineering Department, TOBB University of Economics and Technology, Ankara, Türkiye
– sequence: 4
  givenname: Zaharuddin
  orcidid: 0000-0002-2719-4138
  surname: Mohamed
  fullname: Mohamed, Zaharuddin
  email: zahar@fke.utm.my
  organization: Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
– sequence: 5
  givenname: Zhijie
  orcidid: 0000-0001-9522-4178
  surname: Liu
  fullname: Liu, Zhijie
  email: liuzhijie2012@gmail.com
  organization: School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China
BookMark eNpNkMtLw0AQxhdRsK3ePXhY8Jw6-8rjKLXVQEtBW_AWNtlZ2ZomMQ9B_3q3tgcvM8PwzXwfvzE5r-oKCblhMGUMkvtNmk45cDkVIo5DUGdkxBLJAgAF535WigWCg7gk467bAYgIRDIibyvdfaChq6HsXVMife1172ujC6Sr2mBJU4NV76wrdO_qim47V73Txcsj1ZWh86-6HA573X7TddO7vfv5012RC6vLDq9PfUK2i_lm9hws10_p7GEZFFyqPpA25jbkeay8Yai4T294rrWxOYu1thEzmEiwsc4tS5iRiiGaBKUu4hARxITcHf82bf05YNdnu3poK2-ZCYiU5KFQyqvgqCrauutatFnTur3PnDHIDvwyzy878MtO_PzJ7fHEIeI_uYJERVL8Apk7bsI
CODEN ITIICH
Cites_doi 10.1137/140961511
10.1109/TIM.2021.3122534
10.1016/j.ejcon.2015.04.003
10.1080/00207721.2021.1928328
10.1016/j.ress.2005.11.018
10.1016/j.cam.2022.114794
10.1080/00207178008961080
10.1016/j.ifacol.2017.08.1026
10.1504/IJCAT.2021.121525
10.1109/TII.2022.3177447
10.1109/LCSYS.2022.3183895
10.1007/978-1-4613-0465-4
10.1109/LCSYS.2020.3041407
10.1016/j.automatica.2022.110407
10.1016/j.automatica.2022.110261
10.1016/j.automatica.2021.110012
10.1016/0005-1098(94)90229-1
10.1109/9.508900
10.1109/TCST.2023.3249042
10.1109/CCA.2003.1223194
10.1109/TCSI.2022.3193444
10.1007/s11768-020-00005-z
10.1109/LCSYS.2020.3005429
10.1016/j.ejcon.2021.01.008
10.2316/J.2021.201-0027
10.1080/0020717031000149636
10.1007/s00034-022-02268-0
10.3182/20090706-3-FR-2004.00195
10.1109/TII.2020.2987840
10.1007/978-3-031-32421-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3388605
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 9869
ExternalDocumentID 10_1109_TII_2024_3388605
10509574
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-4f82f62b85ace652338d2baadfb18aaf71de940f8abf191d451eed9e4ac86ee03
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208860200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:18:26 EDT 2025
Sat Nov 29 04:17:12 EST 2025
Wed Aug 27 02:02:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-4f82f62b85ace652338d2baadfb18aaf71de940f8abf191d451eed9e4ac86ee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2719-4138
0000-0002-9928-727X
0000-0002-5992-895X
0000-0002-0828-4234
0000-0001-9522-4178
PQID 3075426355
PQPubID 85507
PageCount 9
ParticipantIDs crossref_primary_10_1109_TII_2024_3388605
ieee_primary_10509574
proquest_journals_3075426355
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref19
ref18
Seborg (ref28) 2004
Mania (ref25) 2022; 23
Sivanandam (ref30) 2008
Pappalardo (ref26) 2023; 9
ref24
ref23
ref20
ref22
ref21
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
Vold (ref7) 1984; 18
Pappalardo (ref16) 2023; 9
References_xml – ident: ref6
  doi: 10.1137/140961511
– ident: ref18
  doi: 10.1109/TIM.2021.3122534
– ident: ref2
  doi: 10.1016/j.ejcon.2015.04.003
– ident: ref23
  doi: 10.1080/00207721.2021.1928328
– ident: ref31
  doi: 10.1016/j.ress.2005.11.018
– ident: ref11
  doi: 10.1016/j.cam.2022.114794
– ident: ref4
  doi: 10.1080/00207178008961080
– ident: ref5
  doi: 10.1016/j.ifacol.2017.08.1026
– ident: ref8
  doi: 10.1504/IJCAT.2021.121525
– ident: ref35
  doi: 10.1109/TII.2022.3177447
– volume: 23
  start-page: 1
  year: 2022
  ident: ref25
  article-title: Active learning for nonlinear system identification with guarantees
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 529
  issue: 2
  year: 2023
  ident: ref16
  article-title: A systematic computational and experimental study of the principal data-driven identification procedures. Part I: Analytical methods and computational algorithms
  publication-title: J. Appl. Comput. Mechanics
– ident: ref20
  doi: 10.1109/LCSYS.2022.3183895
– ident: ref32
  doi: 10.1007/978-1-4613-0465-4
– ident: ref13
  doi: 10.1109/LCSYS.2020.3041407
– ident: ref15
  doi: 10.1016/j.automatica.2022.110407
– ident: ref19
  doi: 10.1016/j.automatica.2022.110261
– ident: ref24
  doi: 10.1016/j.automatica.2021.110012
– ident: ref33
  doi: 10.1016/0005-1098(94)90229-1
– ident: ref34
  doi: 10.1109/9.508900
– ident: ref10
  doi: 10.1109/TCST.2023.3249042
– ident: ref27
  doi: 10.1109/CCA.2003.1223194
– volume: 18
  start-page: 34
  year: 1984
  ident: ref7
  article-title: New ways of estimating frequency response functions
  publication-title: Sound Vib.
– ident: ref9
  doi: 10.1109/TCSI.2022.3193444
– ident: ref17
  doi: 10.1007/s11768-020-00005-z
– ident: ref12
  doi: 10.1109/LCSYS.2020.3005429
– ident: ref14
  doi: 10.1016/j.ejcon.2021.01.008
– ident: ref21
  doi: 10.2316/J.2021.201-0027
– volume: 9
  start-page: 550
  issue: 2
  year: 2023
  ident: ref26
  article-title: A systematic computational and experimental study of the principal data-driven identification procedures. Part II numerical analysis and experimental testing
  publication-title: J. Appl. Comput. Mechanics
– ident: ref1
  doi: 10.1080/0020717031000149636
– volume-title: Introduction to Genetic Algorithms
  year: 2008
  ident: ref30
– ident: ref22
  doi: 10.1007/s00034-022-02268-0
– volume-title: Process Dynamics and Control
  year: 2004
  ident: ref28
– ident: ref3
  doi: 10.3182/20090706-3-FR-2004.00195
– ident: ref36
  doi: 10.1109/TII.2020.2987840
– ident: ref29
  doi: 10.1007/978-3-031-32421-5
SSID ssj0037039
Score 2.3966317
Snippet Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 9861
SubjectTerms Algorithms
Costs
Dynamic models
Dynamical systems
Frequency response
Genetic algorithms
Genetic algorithms (GAs)
identification
masked models
Optimization
Parameters
Social factors
State space models
State-space methods
System effectiveness
Time-frequency analysis
Title Masked Multiple State Space Model Identification Using FRD and Evolutionary Optimization
URI https://ieeexplore.ieee.org/document/10509574
https://www.proquest.com/docview/3075426355
Volume 20
WOSCitedRecordID wos001208860200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3Lw4qGzbdo0OYpuOHBTdMpuJWkSELWTfYH_vS9pCgPx4K2HJi3v9_Jefsn7QOhCRUoyoYqAC3t0ExkdyIjJQGaSaybAgbh2QK_32WjEJhP-6JPVXS6M1toFn-mufXR3-WpaLO1RGaxwcG9pljRQI8tolaxVm10CqstdcdQ0CkgckvpOMuRX48EAmGCcdIGPMWo71a35INdU5Zcldu6lv_vPH9tDO34fia8r4PfRhi4P0PZadcFDNBmK-btWeOhjBrHbWOJnYMka2x5oH7hK0zX-3A67-AHcf7rFolS4t_JqKWbf-AFMy6fP2Wyhl35vfHMX-EYKQREn6SJIDIsNjSVL4QMUqCdhKpZCKAO4CGGySGmehIYJaYC_qSSNwHVynYiCUa1DcoSa5bTUxwhzw4zSxBiSicQoKkHuCgYUJqZKUtJGl7Vo86-qXkbueEbIc4AhtzDkHoY2allRrr1XSbGNOjUYuV9R8xxsUWqLy6fpyR_DTtGWnb2Kpe2g5mK21Gdos1gt3uazc6csP1-rv1k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurBZ8Vq1Ry8eNi6702OopYW2ypapbcl2SQgait9gf_eSTaFgnjwtocNCfNNZjLJzHwAFzKQgnJZeIybq5tAK08EVHgiE0xRjg7E0gG9drJejw4G7NEVq9taGKWUTT5TDfNp3_LlqJiZqzLc4ejekixehTVDneXKtRaGN0LlZbY9ahJ4UehHi1dJn131222MBcO4gREZTQ1X3ZIXsrQqv2yxdTDNnX8ubRe23UmSXJfQ78GKGu7D1lJ_wQMYdPnkXUnSdVmDxB4tyTPGyYoYFrQPUhbqandzR2wGAWk-3RI-lORu7hSTj7_JAxqXT1e1WYWX5l3_puU5KgWvCONk6sWahjoNBU1wghSDz4jKUHAuNSLDuc4CqVjsa8qFxghOxkmAzpOpmBc0VcqPDqEyHA3VERCmqZYq0jrKeKxlKlDuEgcUOkylSKMaXC5Em3-VHTNyG2n4LEcYcgND7mCoQdWIcum_Uoo1qC_AyN2emuRojRLTXj5Jjv8Ydg4brX63k3favfsT2DQzlZm1dahMxzN1CuvFfPo2GZ9ZxfkBgunCog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Masked+Multiple+State+Space+Model+Identification+Using+FRD+and+Evolutionary+Optimization&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Efe%2C+Mehmet+%C3%96nder&rft.au=K%C3%BCrk%C3%A7%C3%BC%2C+Burak&rft.au=Kasnako%C4%9Flu%2C+Co%C5%9Fku&rft.au=Mohamed%2C+Zaharuddin&rft.date=2024-07-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=20&rft.issue=7&rft.spage=9861&rft.epage=9869&rft_id=info:doi/10.1109%2FTII.2024.3388605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2024_3388605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon