Masked Multiple State Space Model Identification Using FRD and Evolutionary Optimization
Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector conta...
Uložené v:
| Vydané v: | IEEE transactions on industrial informatics Ročník 20; číslo 7; s. 9861 - 9869 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector containing <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> quadruple's numerical content and a FRD-associated mask vector set that approximates the spectral information available in each FRD set? This article proposes a genetic algorithm based optimization approach to determine the real parameter vector <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> and the binary mask vector through a sequential optimization scheme. We study state space models for matching FRD from multiple systems. Results show that the proposed optimization approach solves the problem and compresses multiple dynamical models into a single masked one. |
|---|---|
| AbstractList | Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector containing [Formula Omitted] quadruple's numerical content and a FRD-associated mask vector set that approximates the spectral information available in each FRD set? This article proposes a genetic algorithm based optimization approach to determine the real parameter vector [Formula Omitted] and the binary mask vector through a sequential optimization scheme. We study state space models for matching FRD from multiple systems. Results show that the proposed optimization approach solves the problem and compresses multiple dynamical models into a single masked one. Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given different FRD sets obtained from different systems and a fixed state space model structure, is it possible to find a constant parameter vector containing <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> quadruple's numerical content and a FRD-associated mask vector set that approximates the spectral information available in each FRD set? This article proposes a genetic algorithm based optimization approach to determine the real parameter vector <inline-formula><tex-math notation="LaTeX">(\mathbf {A},\mathbf {B},\mathbf {C},\mathbf {D})</tex-math></inline-formula> and the binary mask vector through a sequential optimization scheme. We study state space models for matching FRD from multiple systems. Results show that the proposed optimization approach solves the problem and compresses multiple dynamical models into a single masked one. |
| Author | Liu, Zhijie Kurkcu, Burak Efe, Mehmet Onder Kasnakoglu, Cosku Mohamed, Zaharuddin |
| Author_xml | – sequence: 1 givenname: Mehmet Onder orcidid: 0000-0002-5992-895X surname: Efe fullname: Efe, Mehmet Onder email: onderefe@hacettepe.edu.tr organization: Department of Computer Engineering, Hacettepe University, Ankara, Türkiye – sequence: 2 givenname: Burak orcidid: 0000-0002-0828-4234 surname: Kurkcu fullname: Kurkcu, Burak email: bkurkcu@berkeley.edu organization: Department of Mechanical Engineering, University of California, Berkeley, CA, USA – sequence: 3 givenname: Cosku orcidid: 0000-0002-9928-727X surname: Kasnakoglu fullname: Kasnakoglu, Cosku email: kasnakoglu@etu.edu.tr organization: Electrical and Electronics Engineering Department, TOBB University of Economics and Technology, Ankara, Türkiye – sequence: 4 givenname: Zaharuddin orcidid: 0000-0002-2719-4138 surname: Mohamed fullname: Mohamed, Zaharuddin email: zahar@fke.utm.my organization: Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia – sequence: 5 givenname: Zhijie orcidid: 0000-0001-9522-4178 surname: Liu fullname: Liu, Zhijie email: liuzhijie2012@gmail.com organization: School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China |
| BookMark | eNpNkMtLw0AQxhdRsK3ePXhY8Jw6-8rjKLXVQEtBW_AWNtlZ2ZomMQ9B_3q3tgcvM8PwzXwfvzE5r-oKCblhMGUMkvtNmk45cDkVIo5DUGdkxBLJAgAF535WigWCg7gk467bAYgIRDIibyvdfaChq6HsXVMife1172ujC6Sr2mBJU4NV76wrdO_qim47V73Txcsj1ZWh86-6HA573X7TddO7vfv5012RC6vLDq9PfUK2i_lm9hws10_p7GEZFFyqPpA25jbkeay8Yai4T294rrWxOYu1thEzmEiwsc4tS5iRiiGaBKUu4hARxITcHf82bf05YNdnu3poK2-ZCYiU5KFQyqvgqCrauutatFnTur3PnDHIDvwyzy878MtO_PzJ7fHEIeI_uYJERVL8Apk7bsI |
| CODEN | ITIICH |
| Cites_doi | 10.1137/140961511 10.1109/TIM.2021.3122534 10.1016/j.ejcon.2015.04.003 10.1080/00207721.2021.1928328 10.1016/j.ress.2005.11.018 10.1016/j.cam.2022.114794 10.1080/00207178008961080 10.1016/j.ifacol.2017.08.1026 10.1504/IJCAT.2021.121525 10.1109/TII.2022.3177447 10.1109/LCSYS.2022.3183895 10.1007/978-1-4613-0465-4 10.1109/LCSYS.2020.3041407 10.1016/j.automatica.2022.110407 10.1016/j.automatica.2022.110261 10.1016/j.automatica.2021.110012 10.1016/0005-1098(94)90229-1 10.1109/9.508900 10.1109/TCST.2023.3249042 10.1109/CCA.2003.1223194 10.1109/TCSI.2022.3193444 10.1007/s11768-020-00005-z 10.1109/LCSYS.2020.3005429 10.1016/j.ejcon.2021.01.008 10.2316/J.2021.201-0027 10.1080/0020717031000149636 10.1007/s00034-022-02268-0 10.3182/20090706-3-FR-2004.00195 10.1109/TII.2020.2987840 10.1007/978-3-031-32421-5 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2024.3388605 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 9869 |
| ExternalDocumentID | 10_1109_TII_2024_3388605 10509574 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-4f82f62b85ace652338d2baadfb18aaf71de940f8abf191d451eed9e4ac86ee03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208860200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:18:26 EDT 2025 Sat Nov 29 04:17:12 EST 2025 Wed Aug 27 02:02:26 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-4f82f62b85ace652338d2baadfb18aaf71de940f8abf191d451eed9e4ac86ee03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2719-4138 0000-0002-9928-727X 0000-0002-5992-895X 0000-0002-0828-4234 0000-0001-9522-4178 |
| PQID | 3075426355 |
| PQPubID | 85507 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_TII_2024_3388605 ieee_primary_10509574 proquest_journals_3075426355 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref19 ref18 Seborg (ref28) 2004 Mania (ref25) 2022; 23 Sivanandam (ref30) 2008 Pappalardo (ref26) 2023; 9 ref24 ref23 ref20 ref22 ref21 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 Vold (ref7) 1984; 18 Pappalardo (ref16) 2023; 9 |
| References_xml | – ident: ref6 doi: 10.1137/140961511 – ident: ref18 doi: 10.1109/TIM.2021.3122534 – ident: ref2 doi: 10.1016/j.ejcon.2015.04.003 – ident: ref23 doi: 10.1080/00207721.2021.1928328 – ident: ref31 doi: 10.1016/j.ress.2005.11.018 – ident: ref11 doi: 10.1016/j.cam.2022.114794 – ident: ref4 doi: 10.1080/00207178008961080 – ident: ref5 doi: 10.1016/j.ifacol.2017.08.1026 – ident: ref8 doi: 10.1504/IJCAT.2021.121525 – ident: ref35 doi: 10.1109/TII.2022.3177447 – volume: 23 start-page: 1 year: 2022 ident: ref25 article-title: Active learning for nonlinear system identification with guarantees publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 529 issue: 2 year: 2023 ident: ref16 article-title: A systematic computational and experimental study of the principal data-driven identification procedures. Part I: Analytical methods and computational algorithms publication-title: J. Appl. Comput. Mechanics – ident: ref20 doi: 10.1109/LCSYS.2022.3183895 – ident: ref32 doi: 10.1007/978-1-4613-0465-4 – ident: ref13 doi: 10.1109/LCSYS.2020.3041407 – ident: ref15 doi: 10.1016/j.automatica.2022.110407 – ident: ref19 doi: 10.1016/j.automatica.2022.110261 – ident: ref24 doi: 10.1016/j.automatica.2021.110012 – ident: ref33 doi: 10.1016/0005-1098(94)90229-1 – ident: ref34 doi: 10.1109/9.508900 – ident: ref10 doi: 10.1109/TCST.2023.3249042 – ident: ref27 doi: 10.1109/CCA.2003.1223194 – volume: 18 start-page: 34 year: 1984 ident: ref7 article-title: New ways of estimating frequency response functions publication-title: Sound Vib. – ident: ref9 doi: 10.1109/TCSI.2022.3193444 – ident: ref17 doi: 10.1007/s11768-020-00005-z – ident: ref12 doi: 10.1109/LCSYS.2020.3005429 – ident: ref14 doi: 10.1016/j.ejcon.2021.01.008 – ident: ref21 doi: 10.2316/J.2021.201-0027 – volume: 9 start-page: 550 issue: 2 year: 2023 ident: ref26 article-title: A systematic computational and experimental study of the principal data-driven identification procedures. Part II numerical analysis and experimental testing publication-title: J. Appl. Comput. Mechanics – ident: ref1 doi: 10.1080/0020717031000149636 – volume-title: Introduction to Genetic Algorithms year: 2008 ident: ref30 – ident: ref22 doi: 10.1007/s00034-022-02268-0 – volume-title: Process Dynamics and Control year: 2004 ident: ref28 – ident: ref3 doi: 10.3182/20090706-3-FR-2004.00195 – ident: ref36 doi: 10.1109/TII.2020.2987840 – ident: ref29 doi: 10.1007/978-3-031-32421-5 |
| SSID | ssj0037039 |
| Score | 2.3966317 |
| Snippet | Identification of dynamical systems from frequency response data (FRD) has extensively been studied and effective techniques have been developed. Given... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 9861 |
| SubjectTerms | Algorithms Costs Dynamic models Dynamical systems Frequency response Genetic algorithms Genetic algorithms (GAs) identification masked models Optimization Parameters Social factors State space models State-space methods System effectiveness Time-frequency analysis |
| Title | Masked Multiple State Space Model Identification Using FRD and Evolutionary Optimization |
| URI | https://ieeexplore.ieee.org/document/10509574 https://www.proquest.com/docview/3075426355 |
| Volume | 20 |
| WOSCitedRecordID | wos001208860200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3Lw4qGzbdo0OYpuOHBTdMpuJWkSELWTfYH_vS9pCgPx4K2HJi3v9_Jefsn7QOhCRUoyoYqAC3t0ExkdyIjJQGaSaybAgbh2QK_32WjEJhP-6JPVXS6M1toFn-mufXR3-WpaLO1RGaxwcG9pljRQI8tolaxVm10CqstdcdQ0CkgckvpOMuRX48EAmGCcdIGPMWo71a35INdU5Zcldu6lv_vPH9tDO34fia8r4PfRhi4P0PZadcFDNBmK-btWeOhjBrHbWOJnYMka2x5oH7hK0zX-3A67-AHcf7rFolS4t_JqKWbf-AFMy6fP2Wyhl35vfHMX-EYKQREn6SJIDIsNjSVL4QMUqCdhKpZCKAO4CGGySGmehIYJaYC_qSSNwHVynYiCUa1DcoSa5bTUxwhzw4zSxBiSicQoKkHuCgYUJqZKUtJGl7Vo86-qXkbueEbIc4AhtzDkHoY2allRrr1XSbGNOjUYuV9R8xxsUWqLy6fpyR_DTtGWnb2Kpe2g5mK21Gdos1gt3uazc6csP1-rv1k |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurBZ8Vq1Ry8eNi6702OopYW2ypapbcl2SQgait9gf_eSTaFgnjwtocNCfNNZjLJzHwAFzKQgnJZeIybq5tAK08EVHgiE0xRjg7E0gG9drJejw4G7NEVq9taGKWUTT5TDfNp3_LlqJiZqzLc4ejekixehTVDneXKtRaGN0LlZbY9ahJ4UehHi1dJn131222MBcO4gREZTQ1X3ZIXsrQqv2yxdTDNnX8ubRe23UmSXJfQ78GKGu7D1lJ_wQMYdPnkXUnSdVmDxB4tyTPGyYoYFrQPUhbqandzR2wGAWk-3RI-lORu7hSTj7_JAxqXT1e1WYWX5l3_puU5KgWvCONk6sWahjoNBU1wghSDz4jKUHAuNSLDuc4CqVjsa8qFxghOxkmAzpOpmBc0VcqPDqEyHA3VERCmqZYq0jrKeKxlKlDuEgcUOkylSKMaXC5Em3-VHTNyG2n4LEcYcgND7mCoQdWIcum_Uoo1qC_AyN2emuRojRLTXj5Jjv8Ydg4brX63k3favfsT2DQzlZm1dahMxzN1CuvFfPo2GZ9ZxfkBgunCog |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Masked+Multiple+State+Space+Model+Identification+Using+FRD+and+Evolutionary+Optimization&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Efe%2C+Mehmet+%C3%96nder&rft.au=K%C3%BCrk%C3%A7%C3%BC%2C+Burak&rft.au=Kasnako%C4%9Flu%2C+Co%C5%9Fku&rft.au=Mohamed%2C+Zaharuddin&rft.date=2024-07-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=20&rft.issue=7&rft.spage=9861&rft.epage=9869&rft_id=info:doi/10.1109%2FTII.2024.3388605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2024_3388605 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |