Predictive Algorithm for Team Mental Model Convergence

Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move the team in the right direction of team mental models (TMMs), individually held cognitive representations of task components that when simil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on computational social systems Ročník 10; číslo 2; s. 640 - 655
Hlavní autoři: Poozhithara, Jeffy Jahfar, Kennedy, Deanna M., Onstot, Spencer, Januskeviciute, Agne, Cekrezi, Marjanthi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2329-924X, 2373-7476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move the team in the right direction of team mental models (TMMs), individually held cognitive representations of task components that when similar and/or accurate can promote task success. We begin by defining the new concept of mental model shifts (MMSs) as the directional shift in each team member's mental model, leading to an increase or decrease in convergence toward a shared or quality referent mental model. Next, we propose an algorithm that applies the concepts of Markov chains and vector geometry on communication patterns to predict future patterns and TMM convergence (i.e., sharedness and quality) levels. We base the model on a dataset of teams conducting the National Aeronautics and Space Administration (NASA) human exploration research analog (HERA) missions from which we draw communication attributes of MMS, process topic, and message purpose. We show that tasks can be modeled as vectors using the frequency of attribute patterns. Our initial experiments show that an accuracy of up to 86.21% can be achieved in predicting future communication patterns with data from real-world tasks. Furthermore, we validate the estimation of TMM sharedness, showing that the model results are comparable to sharedness ratings provided by subject matter experts with an average accuracy of 71.29%. Research and practical implications are discussed.
AbstractList Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move the team in the right direction of team mental models (TMMs), individually held cognitive representations of task components that when similar and/or accurate can promote task success. We begin by defining the new concept of mental model shifts (MMSs) as the directional shift in each team member's mental model, leading to an increase or decrease in convergence toward a shared or quality referent mental model. Next, we propose an algorithm that applies the concepts of Markov chains and vector geometry on communication patterns to predict future patterns and TMM convergence (i.e., sharedness and quality) levels. We base the model on a dataset of teams conducting the National Aeronautics and Space Administration (NASA) human exploration research analog (HERA) missions from which we draw communication attributes of MMS, process topic, and message purpose. We show that tasks can be modeled as vectors using the frequency of attribute patterns. Our initial experiments show that an accuracy of up to 86.21% can be achieved in predicting future communication patterns with data from real-world tasks. Furthermore, we validate the estimation of TMM sharedness, showing that the model results are comparable to sharedness ratings provided by subject matter experts with an average accuracy of 71.29%. Research and practical implications are discussed.
Author Cekrezi, Marjanthi
Onstot, Spencer
Januskeviciute, Agne
Kennedy, Deanna M.
Poozhithara, Jeffy Jahfar
Author_xml – sequence: 1
  givenname: Jeffy Jahfar
  orcidid: 0000-0002-4692-3586
  surname: Poozhithara
  fullname: Poozhithara, Jeffy Jahfar
  email: jeffyj@uw.edu
  organization: Business Department, University of Washington at Bothell, Bothell, WA, USA
– sequence: 2
  givenname: Deanna M.
  orcidid: 0000-0002-0314-4777
  surname: Kennedy
  fullname: Kennedy, Deanna M.
  email: deannak@uw.edu
  organization: Business Department, University of Washington at Bothell, Bothell, WA, USA
– sequence: 3
  givenname: Spencer
  orcidid: 0000-0001-8488-9190
  surname: Onstot
  fullname: Onstot, Spencer
  email: onstot2@uw.edu
  organization: Business Department, University of Washington at Bothell, Bothell, WA, USA
– sequence: 4
  givenname: Agne
  surname: Januskeviciute
  fullname: Januskeviciute, Agne
  email: agnejan@uw.edu
  organization: Business Department, University of Washington at Bothell, Bothell, WA, USA
– sequence: 5
  givenname: Marjanthi
  surname: Cekrezi
  fullname: Cekrezi, Marjanthi
  email: cekrem@uw.edu
  organization: Business Department, University of Washington at Bothell, Bothell, WA, USA
BookMark eNo9kE1Lw0AQhhepYK39AeIl4Dl1d3azH8cS_IIWhVbwtqS7k5qSZusmLfjvTah4mjk87zvMc01GTWiQkFtGZ4xR87DOV6sZUIAZZ9IokBdkDFzxVAklR8MOJjUgPq_ItG13lFIGWaaAjol8j-gr11UnTOb1NsSq-9onZYjJGot9ssSmK-pkGTzWSR6aE8YtNg5vyGVZ1C1O_-aEfDw9rvOXdPH2_JrPF6kDkXWp0CLTynjJhXa0kMg2csOE3wAtValLr6kylDmuHaLmJRReGw3KK9bTRvAJuT_3HmL4PmLb2V04xqY_aUEZDv37zPQUO1MuhraNWNpDrPZF_LGM2sGQHQzZwZD9M9Rn7s6ZChH_eaOkBir4L8bHYZ8
CODEN ITCSGL
Cites_doi 10.1177/0018720810370458
10.1109/ICACT.2008.4493758
10.1518/001872000779656534
10.1109/TCSS.2020.3030840
10.1037/a0018444
10.1109/TCSS.2019.2909269
10.1037/a0037339
10.1002/job.87
10.5465/amr.2001.4845785
10.1109/TCSS.2014.2307453
10.1037/a0017455
10.1007/978-3-030-36159-4_8
10.1007/springerreference_222298
10.1016/S1475-9144(07)06005-5
10.1002/job.2267
10.1007/978-3-030-36159-4_7
10.1109/TSMCB.2010.2053705
10.1207/s15324834basp1703_6
10.2307/2346830
10.1109/CogSIMA51574.2021.9475925
10.1177/1071181311551267
10.1016/0271-5309(85)90024-2
10.1177/0001839217750856
10.1109/TCSS.2020.2986161
10.1111/j.2517-6161.1974.tb00994.x
10.1109/TSMC.2017.2748985
10.1177/0149206309356804
10.1002/job.387
10.1109/TCSS.2017.2672980
10.1207/s15327051hci0704_1
10.1037/0021-9010.91.3.727
10.1108/eb028933
10.1177/1059601114550080
10.1002/job.296
10.5465/19416520.2011.590297
10.1177/1046496413478205
10.1006/obhd.2001.2961
10.1177/1094428106296642
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSS.2022.3169726
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 655
ExternalDocumentID 10_1109_TCSS_2022_3169726
9768204
Genre orig-research
GrantInformation_xml – fundername: Army Research Office through Proposal 72810-NS
  funderid: 10.13039/100000183
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-4845879d6348c0a6e1b6b14db20f7f8fd807901c38cee83f2ad89827d710a6943
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791718200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-924X
IngestDate Mon Jun 30 03:32:59 EDT 2025
Sat Nov 29 01:37:10 EST 2025
Wed Aug 27 02:49:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-4845879d6348c0a6e1b6b14db20f7f8fd807901c38cee83f2ad89827d710a6943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8488-9190
0000-0002-0314-4777
0000-0002-4692-3586
PQID 2793211019
PQPubID 2040411
PageCount 16
ParticipantIDs crossref_primary_10_1109_TCSS_2022_3169726
ieee_primary_9768204
proquest_journals_2793211019
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Vozdolska (ref11)
ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref33
ref10
ref32
Paul (ref31)
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
Cannon-Bowers (ref2) 1990; 33
Duncan (ref4) 1996; 8
ref41
Steiner (ref1) 1972
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.1177/0018720810370458
– ident: ref18
  doi: 10.1109/ICACT.2008.4493758
– ident: ref22
  doi: 10.1518/001872000779656534
– ident: ref6
  doi: 10.1109/TCSS.2020.3030840
– ident: ref8
  doi: 10.1037/a0018444
– ident: ref7
  doi: 10.1109/TCSS.2019.2909269
– ident: ref40
  doi: 10.1037/a0037339
– volume: 33
  start-page: 1
  issue: 12
  year: 1990
  ident: ref2
  article-title: Cognitive psychology and team training: Training shared mental models and complex systems
  publication-title: Hum. Factors Soc. Bull.
– ident: ref13
  doi: 10.1002/job.87
– ident: ref28
  doi: 10.5465/amr.2001.4845785
– ident: ref10
  doi: 10.1109/TCSS.2014.2307453
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Maintenance Facility Manage.
  ident: ref11
  article-title: Optimizing team performance through communication: The role of team size, interdependence, and communication media
– ident: ref23
  doi: 10.1037/a0017455
– ident: ref35
  doi: 10.1007/978-3-030-36159-4_8
– ident: ref33
  doi: 10.1007/springerreference_222298
– ident: ref39
  doi: 10.1016/S1475-9144(07)06005-5
– start-page: 94
  volume-title: Proc. Joint Conf. Empirical Methods Natural Lang. Process. Comput. Natural Lang. Learn.
  ident: ref31
  article-title: Mixed membership Markov models for unsupervised conversation modeling
– ident: ref36
  doi: 10.1002/job.2267
– ident: ref37
  doi: 10.1007/978-3-030-36159-4_7
– ident: ref27
  doi: 10.1109/TSMCB.2010.2053705
– ident: ref34
  doi: 10.1207/s15324834basp1703_6
– ident: ref19
  doi: 10.2307/2346830
– ident: ref29
  doi: 10.1109/CogSIMA51574.2021.9475925
– ident: ref24
  doi: 10.1177/1071181311551267
– ident: ref30
  doi: 10.1016/0271-5309(85)90024-2
– ident: ref16
  doi: 10.1177/0001839217750856
– ident: ref43
  doi: 10.1109/TCSS.2020.2986161
– volume-title: Group Process and Productivity
  year: 1972
  ident: ref1
– ident: ref20
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– ident: ref26
  doi: 10.1109/TSMC.2017.2748985
– ident: ref3
  doi: 10.1177/0149206309356804
– ident: ref9
  doi: 10.1002/job.387
– ident: ref21
  doi: 10.1109/TCSS.2017.2672980
– ident: ref32
  doi: 10.1207/s15327051hci0704_1
– volume: 8
  start-page: 173
  volume-title: Human Technology Interaction in Complex Systems
  year: 1996
  ident: ref4
  article-title: Training teams working in complex systems: A mental model-based approach
– ident: ref25
  doi: 10.1037/0021-9010.91.3.727
– ident: ref42
  doi: 10.1108/eb028933
– ident: ref5
  doi: 10.1177/1059601114550080
– ident: ref12
  doi: 10.1002/job.296
– ident: ref14
  doi: 10.5465/19416520.2011.590297
– ident: ref15
  doi: 10.1177/1046496413478205
– ident: ref38
  doi: 10.1006/obhd.2001.2961
– ident: ref41
  doi: 10.1177/1094428106296642
SSID ssj0001255720
Score 2.2267706
Snippet Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 640
SubjectTerms Accuracy
Aeronautics
Algorithms
Cognitive science
Communication
Convergence
Heuristic algorithms
Markov chains
Markov processes
Mathematical models
Prediction algorithms
Predictive models
Stochastic chains
Task analysis
team cognition
team communication
Team leaders
team mental models (TMMs)
Title Predictive Algorithm for Team Mental Model Convergence
URI https://ieeexplore.ieee.org/document/9768204
https://www.proquest.com/docview/2793211019
Volume 10
WOSCitedRecordID wos000791718200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255720
  issn: 2329-924X
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4sGLrypGq-zBg4qxyWafx1IsHqQUWqG3kGx2tdCHpKm_390kLQW9eMthA8s3u_PN7LwA7hjHRBll_CTR2CcmUb5gRPpEJyylQUajStJvfDgU06kcNeBpVwujtS6Tz_Sz-yxj-dlKbdxTWddSpyUs0oQm57yq1dp7T6GU423gMgxkd9Ifj60DiLH1S5nkrn3CHvWUs1R-KeCSVQbH_9vPCRzV1iPqVeI-hYZenoFXldii-pqu0X3dS_qhDWyUu0iM02moN_9Y5bPic4GsoYomOlmgqoMPcgPR5qjvEtDLWkx9Du-Dl0n_1a9HJfgKE1r4RBAquMxYRIQKEqbDlKUhyVIcGG6EyUTALfOrSFhSFJHBSSakwDyzBkbCJIkuoLVcLfUloECRyBolhhqmiKY4pVZo1inLwtCkJgo8eNyiGH9VHTHi0pMIZOwgjx3kcQ25B20H225hjZgHnS3ucX1n1jG2qsK5o6G8-vuvazh0w96rvJkOtIp8o2_gQH0Xs3V-Wx6HH3gLsug
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKejFb7E6NQcPKta1aZImxzEcE-cYrMJupU0THexD9uHfb9J2Y6AXbz2kEH4veb_38r4AblmIidRSu0misEt0Il3OiHCJSlhKvYwGhaQ7YbfLBwPRq8DjuhZGKZUnn6kn-5nH8rOpXNqnsrqhTkNYZAu2KSHYL6q1Nl5UKA3xKnTpe6IeNft94wJibDxTJkLbQGGDfPJpKr9UcM4rrYP_7egQ9kv7ETUKgR9BRU2OwSmKbFF5UeforuwmfX8CrDezsRir1VBj9DGdDRefY2RMVRSpZIyKHj7IjkQboaZNQc-rMdUpvLeeo2bbLYcluBITunAJJ5SHImMB4dJLmPJTlvokS7GnQ811xr3QcL8MuKFFHmicZFxwHGbGxEiYIMEZVCfTiToH5EkSGLNEU80kURSn1IjNuGWZ7-tUB54DDysU46-iJ0ac-xKeiC3ksYU8LiF34MTCtl5YIuZAbYV7XN6aeYyNsrAOqS8u_v7rBnbb0Vsn7rx0Xy9hz45-L7JoalBdzJbqCnbk92I4n13nR-MH9fe2Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Algorithm+for+Team+Mental+Model+Convergence&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Poozhithara%2C+Jeffy+Jahfar&rft.au=Kennedy%2C+Deanna+M.&rft.au=Onstot%2C+Spencer&rft.au=Janu%C5%A1kevi%C4%8Di%C5%ABt%C4%97%2C+Agn%C4%97&rft.date=2023-04-01&rft.issn=2329-924X&rft.eissn=2373-7476&rft.volume=10&rft.issue=2&rft.spage=640&rft.epage=655&rft_id=info:doi/10.1109%2FTCSS.2022.3169726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSS_2022_3169726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon