Predictive Algorithm for Team Mental Model Convergence
Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move the team in the right direction of team mental models (TMMs), individually held cognitive representations of task components that when simil...
Uloženo v:
| Vydáno v: | IEEE transactions on computational social systems Ročník 10; číslo 2; s. 640 - 655 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2329-924X, 2373-7476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move the team in the right direction of team mental models (TMMs), individually held cognitive representations of task components that when similar and/or accurate can promote task success. We begin by defining the new concept of mental model shifts (MMSs) as the directional shift in each team member's mental model, leading to an increase or decrease in convergence toward a shared or quality referent mental model. Next, we propose an algorithm that applies the concepts of Markov chains and vector geometry on communication patterns to predict future patterns and TMM convergence (i.e., sharedness and quality) levels. We base the model on a dataset of teams conducting the National Aeronautics and Space Administration (NASA) human exploration research analog (HERA) missions from which we draw communication attributes of MMS, process topic, and message purpose. We show that tasks can be modeled as vectors using the frequency of attribute patterns. Our initial experiments show that an accuracy of up to 86.21% can be achieved in predicting future communication patterns with data from real-world tasks. Furthermore, we validate the estimation of TMM sharedness, showing that the model results are comparable to sharedness ratings provided by subject matter experts with an average accuracy of 71.29%. Research and practical implications are discussed. |
|---|---|
| AbstractList | Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move the team in the right direction of team mental models (TMMs), individually held cognitive representations of task components that when similar and/or accurate can promote task success. We begin by defining the new concept of mental model shifts (MMSs) as the directional shift in each team member's mental model, leading to an increase or decrease in convergence toward a shared or quality referent mental model. Next, we propose an algorithm that applies the concepts of Markov chains and vector geometry on communication patterns to predict future patterns and TMM convergence (i.e., sharedness and quality) levels. We base the model on a dataset of teams conducting the National Aeronautics and Space Administration (NASA) human exploration research analog (HERA) missions from which we draw communication attributes of MMS, process topic, and message purpose. We show that tasks can be modeled as vectors using the frequency of attribute patterns. Our initial experiments show that an accuracy of up to 86.21% can be achieved in predicting future communication patterns with data from real-world tasks. Furthermore, we validate the estimation of TMM sharedness, showing that the model results are comparable to sharedness ratings provided by subject matter experts with an average accuracy of 71.29%. Research and practical implications are discussed. |
| Author | Cekrezi, Marjanthi Onstot, Spencer Januskeviciute, Agne Kennedy, Deanna M. Poozhithara, Jeffy Jahfar |
| Author_xml | – sequence: 1 givenname: Jeffy Jahfar orcidid: 0000-0002-4692-3586 surname: Poozhithara fullname: Poozhithara, Jeffy Jahfar email: jeffyj@uw.edu organization: Business Department, University of Washington at Bothell, Bothell, WA, USA – sequence: 2 givenname: Deanna M. orcidid: 0000-0002-0314-4777 surname: Kennedy fullname: Kennedy, Deanna M. email: deannak@uw.edu organization: Business Department, University of Washington at Bothell, Bothell, WA, USA – sequence: 3 givenname: Spencer orcidid: 0000-0001-8488-9190 surname: Onstot fullname: Onstot, Spencer email: onstot2@uw.edu organization: Business Department, University of Washington at Bothell, Bothell, WA, USA – sequence: 4 givenname: Agne surname: Januskeviciute fullname: Januskeviciute, Agne email: agnejan@uw.edu organization: Business Department, University of Washington at Bothell, Bothell, WA, USA – sequence: 5 givenname: Marjanthi surname: Cekrezi fullname: Cekrezi, Marjanthi email: cekrem@uw.edu organization: Business Department, University of Washington at Bothell, Bothell, WA, USA |
| BookMark | eNo9kE1Lw0AQhhepYK39AeIl4Dl1d3azH8cS_IIWhVbwtqS7k5qSZusmLfjvTah4mjk87zvMc01GTWiQkFtGZ4xR87DOV6sZUIAZZ9IokBdkDFzxVAklR8MOJjUgPq_ItG13lFIGWaaAjol8j-gr11UnTOb1NsSq-9onZYjJGot9ssSmK-pkGTzWSR6aE8YtNg5vyGVZ1C1O_-aEfDw9rvOXdPH2_JrPF6kDkXWp0CLTynjJhXa0kMg2csOE3wAtValLr6kylDmuHaLmJRReGw3KK9bTRvAJuT_3HmL4PmLb2V04xqY_aUEZDv37zPQUO1MuhraNWNpDrPZF_LGM2sGQHQzZwZD9M9Rn7s6ZChH_eaOkBir4L8bHYZ8 |
| CODEN | ITCSGL |
| Cites_doi | 10.1177/0018720810370458 10.1109/ICACT.2008.4493758 10.1518/001872000779656534 10.1109/TCSS.2020.3030840 10.1037/a0018444 10.1109/TCSS.2019.2909269 10.1037/a0037339 10.1002/job.87 10.5465/amr.2001.4845785 10.1109/TCSS.2014.2307453 10.1037/a0017455 10.1007/978-3-030-36159-4_8 10.1007/springerreference_222298 10.1016/S1475-9144(07)06005-5 10.1002/job.2267 10.1007/978-3-030-36159-4_7 10.1109/TSMCB.2010.2053705 10.1207/s15324834basp1703_6 10.2307/2346830 10.1109/CogSIMA51574.2021.9475925 10.1177/1071181311551267 10.1016/0271-5309(85)90024-2 10.1177/0001839217750856 10.1109/TCSS.2020.2986161 10.1111/j.2517-6161.1974.tb00994.x 10.1109/TSMC.2017.2748985 10.1177/0149206309356804 10.1002/job.387 10.1109/TCSS.2017.2672980 10.1207/s15327051hci0704_1 10.1037/0021-9010.91.3.727 10.1108/eb028933 10.1177/1059601114550080 10.1002/job.296 10.5465/19416520.2011.590297 10.1177/1046496413478205 10.1006/obhd.2001.2961 10.1177/1094428106296642 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSS.2022.3169726 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EISSN | 2373-7476 |
| EndPage | 655 |
| ExternalDocumentID | 10_1109_TCSS_2022_3169726 9768204 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Army Research Office through Proposal 72810-NS funderid: 10.13039/100000183 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-4845879d6348c0a6e1b6b14db20f7f8fd807901c38cee83f2ad89827d710a6943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791718200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-924X |
| IngestDate | Mon Jun 30 03:32:59 EDT 2025 Sat Nov 29 01:37:10 EST 2025 Wed Aug 27 02:49:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-4845879d6348c0a6e1b6b14db20f7f8fd807901c38cee83f2ad89827d710a6943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8488-9190 0000-0002-0314-4777 0000-0002-4692-3586 |
| PQID | 2793211019 |
| PQPubID | 2040411 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TCSS_2022_3169726 ieee_primary_9768204 proquest_journals_2793211019 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on computational social systems |
| PublicationTitleAbbrev | TCSS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Vozdolska (ref11) ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref33 ref10 ref32 Paul (ref31) ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 Cannon-Bowers (ref2) 1990; 33 Duncan (ref4) 1996; 8 ref41 Steiner (ref1) 1972 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref17 doi: 10.1177/0018720810370458 – ident: ref18 doi: 10.1109/ICACT.2008.4493758 – ident: ref22 doi: 10.1518/001872000779656534 – ident: ref6 doi: 10.1109/TCSS.2020.3030840 – ident: ref8 doi: 10.1037/a0018444 – ident: ref7 doi: 10.1109/TCSS.2019.2909269 – ident: ref40 doi: 10.1037/a0037339 – volume: 33 start-page: 1 issue: 12 year: 1990 ident: ref2 article-title: Cognitive psychology and team training: Training shared mental models and complex systems publication-title: Hum. Factors Soc. Bull. – ident: ref13 doi: 10.1002/job.87 – ident: ref28 doi: 10.5465/amr.2001.4845785 – ident: ref10 doi: 10.1109/TCSS.2014.2307453 – start-page: 1 volume-title: Proc. 3rd Int. Conf. Maintenance Facility Manage. ident: ref11 article-title: Optimizing team performance through communication: The role of team size, interdependence, and communication media – ident: ref23 doi: 10.1037/a0017455 – ident: ref35 doi: 10.1007/978-3-030-36159-4_8 – ident: ref33 doi: 10.1007/springerreference_222298 – ident: ref39 doi: 10.1016/S1475-9144(07)06005-5 – start-page: 94 volume-title: Proc. Joint Conf. Empirical Methods Natural Lang. Process. Comput. Natural Lang. Learn. ident: ref31 article-title: Mixed membership Markov models for unsupervised conversation modeling – ident: ref36 doi: 10.1002/job.2267 – ident: ref37 doi: 10.1007/978-3-030-36159-4_7 – ident: ref27 doi: 10.1109/TSMCB.2010.2053705 – ident: ref34 doi: 10.1207/s15324834basp1703_6 – ident: ref19 doi: 10.2307/2346830 – ident: ref29 doi: 10.1109/CogSIMA51574.2021.9475925 – ident: ref24 doi: 10.1177/1071181311551267 – ident: ref30 doi: 10.1016/0271-5309(85)90024-2 – ident: ref16 doi: 10.1177/0001839217750856 – ident: ref43 doi: 10.1109/TCSS.2020.2986161 – volume-title: Group Process and Productivity year: 1972 ident: ref1 – ident: ref20 doi: 10.1111/j.2517-6161.1974.tb00994.x – ident: ref26 doi: 10.1109/TSMC.2017.2748985 – ident: ref3 doi: 10.1177/0149206309356804 – ident: ref9 doi: 10.1002/job.387 – ident: ref21 doi: 10.1109/TCSS.2017.2672980 – ident: ref32 doi: 10.1207/s15327051hci0704_1 – volume: 8 start-page: 173 volume-title: Human Technology Interaction in Complex Systems year: 1996 ident: ref4 article-title: Training teams working in complex systems: A mental model-based approach – ident: ref25 doi: 10.1037/0021-9010.91.3.727 – ident: ref42 doi: 10.1108/eb028933 – ident: ref5 doi: 10.1177/1059601114550080 – ident: ref12 doi: 10.1002/job.296 – ident: ref14 doi: 10.5465/19416520.2011.590297 – ident: ref15 doi: 10.1177/1046496413478205 – ident: ref38 doi: 10.1006/obhd.2001.2961 – ident: ref41 doi: 10.1177/1094428106296642 |
| SSID | ssj0001255720 |
| Score | 2.2267706 |
| Snippet | Is everyone on your team on the same page about the task? This is a question team leaders want to know. Herein, we take an approach that can help managers move... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 640 |
| SubjectTerms | Accuracy Aeronautics Algorithms Cognitive science Communication Convergence Heuristic algorithms Markov chains Markov processes Mathematical models Prediction algorithms Predictive models Stochastic chains Task analysis team cognition team communication Team leaders team mental models (TMMs) |
| Title | Predictive Algorithm for Team Mental Model Convergence |
| URI | https://ieeexplore.ieee.org/document/9768204 https://www.proquest.com/docview/2793211019 |
| Volume | 10 |
| WOSCitedRecordID | wos000791718200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2373-7476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255720 issn: 2329-924X databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4sGLrypGq-zBg4qxyWafx1IsHqQUWqG3kGx2tdCHpKm_390kLQW9eMthA8s3u_PN7LwA7hjHRBll_CTR2CcmUb5gRPpEJyylQUajStJvfDgU06kcNeBpVwujtS6Tz_Sz-yxj-dlKbdxTWddSpyUs0oQm57yq1dp7T6GU423gMgxkd9Ifj60DiLH1S5nkrn3CHvWUs1R-KeCSVQbH_9vPCRzV1iPqVeI-hYZenoFXldii-pqu0X3dS_qhDWyUu0iM02moN_9Y5bPic4GsoYomOlmgqoMPcgPR5qjvEtDLWkx9Du-Dl0n_1a9HJfgKE1r4RBAquMxYRIQKEqbDlKUhyVIcGG6EyUTALfOrSFhSFJHBSSakwDyzBkbCJIkuoLVcLfUloECRyBolhhqmiKY4pVZo1inLwtCkJgo8eNyiGH9VHTHi0pMIZOwgjx3kcQ25B20H225hjZgHnS3ucX1n1jG2qsK5o6G8-vuvazh0w96rvJkOtIp8o2_gQH0Xs3V-Wx6HH3gLsug |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKejFb7E6NQcPKta1aZImxzEcE-cYrMJupU0THexD9uHfb9J2Y6AXbz2kEH4veb_38r4AblmIidRSu0misEt0Il3OiHCJSlhKvYwGhaQ7YbfLBwPRq8DjuhZGKZUnn6kn-5nH8rOpXNqnsrqhTkNYZAu2KSHYL6q1Nl5UKA3xKnTpe6IeNft94wJibDxTJkLbQGGDfPJpKr9UcM4rrYP_7egQ9kv7ETUKgR9BRU2OwSmKbFF5UeforuwmfX8CrDezsRir1VBj9DGdDRefY2RMVRSpZIyKHj7IjkQboaZNQc-rMdUpvLeeo2bbLYcluBITunAJJ5SHImMB4dJLmPJTlvokS7GnQ811xr3QcL8MuKFFHmicZFxwHGbGxEiYIMEZVCfTiToH5EkSGLNEU80kURSn1IjNuGWZ7-tUB54DDysU46-iJ0ac-xKeiC3ksYU8LiF34MTCtl5YIuZAbYV7XN6aeYyNsrAOqS8u_v7rBnbb0Vsn7rx0Xy9hz45-L7JoalBdzJbqCnbk92I4n13nR-MH9fe2Lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Algorithm+for+Team+Mental+Model+Convergence&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Poozhithara%2C+Jeffy+Jahfar&rft.au=Kennedy%2C+Deanna+M.&rft.au=Onstot%2C+Spencer&rft.au=Janu%C5%A1kevi%C4%8Di%C5%ABt%C4%97%2C+Agn%C4%97&rft.date=2023-04-01&rft.issn=2329-924X&rft.eissn=2373-7476&rft.volume=10&rft.issue=2&rft.spage=640&rft.epage=655&rft_id=info:doi/10.1109%2FTCSS.2022.3169726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSS_2022_3169726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon |