Accelerating Neural BP-Based Decoder Using Coded Distributed Computing
While neural BP-based (NBP) decoders exhibit superior error correction performance compared to belief-propagation (BP) decoders, the NBP decoder's high computational and memory requirements impede its practical deployment in communication systems. To overcome this challenge, we propose a Coded...
Uložené v:
| Vydané v: | IEEE transactions on vehicular technology Ročník 73; číslo 9; s. 13997 - 14002 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | While neural BP-based (NBP) decoders exhibit superior error correction performance compared to belief-propagation (BP) decoders, the NBP decoder's high computational and memory requirements impede its practical deployment in communication systems. To overcome this challenge, we propose a Coded Neural BP (CNBP) scheme to accelerate the NBP decoder in distributed environments, while considering storage constraints and providing resilience to stragglers. The key idea is to reformulate the primary operations of the NBP decoder as matrix-vector multiplications by introducing weight matrices and transformations. Based on this, the acceleration of the NBP decoder is achieved by speeding up matrix-vector multiplications using coded distributed computing. Extensive experiments conducted on Amazon EC2 cluster demonstrate that CNBP achieves notable acceleration and scalability performance without any loss in error correction performance. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2024.3391836 |