A unified framework for nonconvex nonsmooth sparse and low-rank decomposition by majorization-minimization algorithm

Recovering a low-rank matrix and a sparse matrix from an observed matrix, known as sparse and low-rank decomposition (SLRD), is becoming a hot topic in recent years. The most popular model for SLRD is to use the ℓ1 norm and nuclear norm for the sparse and low-rank approximation. Since this convex mo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute Vol. 359; no. 16; pp. 9376 - 9400
Main Authors: Zheng, Qian-Zhen, Xu, Ping-Feng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2022
ISSN:0016-0032, 1879-2693
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recovering a low-rank matrix and a sparse matrix from an observed matrix, known as sparse and low-rank decomposition (SLRD), is becoming a hot topic in recent years. The most popular model for SLRD is to use the ℓ1 norm and nuclear norm for the sparse and low-rank approximation. Since this convex model has certain limitations, various nonconvex models have been explored and found to be very promising. In this paper, we introduce a generalized nonconvex nonsmooth model for SLRD which covers a wide range of nonconvex surrogate functions that are continuous, concave and monotonically increasing on [0,∞) to approximate both the ℓ0 norm and the rank function, such as ℓp norm (0<p<1), Logarithm, Geman, SCAD and MCP functions. The choice of the nonconvex surrogates for the sparse and low-rank components can be different. Due to the nonconvexity and extensive options of the surrogates, the optimization problem is untractable. Based on the majorization-minimization (MM) algorithm, we propose a unified framework named MM-ADMM algorithm to solve this problem, which can be applied to all eligible surrogates as long as their supergradients are available. The constrained majorizing problems established under the MM framework can be easily solved by the alternating direction method of multipliers (ADMM). The theoretical convergence properties are investigated and proved, including the convergence of the sequence of objective function values generated by the designed algorithm and a weak convergence result related to the inner ADMM-iterations. Experiments on the synthetic data and real-world applications demonstrate the effectiveness of our designed MM-ADMM algorithm.
AbstractList Recovering a low-rank matrix and a sparse matrix from an observed matrix, known as sparse and low-rank decomposition (SLRD), is becoming a hot topic in recent years. The most popular model for SLRD is to use the ℓ1 norm and nuclear norm for the sparse and low-rank approximation. Since this convex model has certain limitations, various nonconvex models have been explored and found to be very promising. In this paper, we introduce a generalized nonconvex nonsmooth model for SLRD which covers a wide range of nonconvex surrogate functions that are continuous, concave and monotonically increasing on [0,∞) to approximate both the ℓ0 norm and the rank function, such as ℓp norm (0<p<1), Logarithm, Geman, SCAD and MCP functions. The choice of the nonconvex surrogates for the sparse and low-rank components can be different. Due to the nonconvexity and extensive options of the surrogates, the optimization problem is untractable. Based on the majorization-minimization (MM) algorithm, we propose a unified framework named MM-ADMM algorithm to solve this problem, which can be applied to all eligible surrogates as long as their supergradients are available. The constrained majorizing problems established under the MM framework can be easily solved by the alternating direction method of multipliers (ADMM). The theoretical convergence properties are investigated and proved, including the convergence of the sequence of objective function values generated by the designed algorithm and a weak convergence result related to the inner ADMM-iterations. Experiments on the synthetic data and real-world applications demonstrate the effectiveness of our designed MM-ADMM algorithm.
Author Zheng, Qian-Zhen
Xu, Ping-Feng
Author_xml – sequence: 1
  givenname: Qian-Zhen
  surname: Zheng
  fullname: Zheng, Qian-Zhen
  organization: School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
– sequence: 2
  givenname: Ping-Feng
  orcidid: 0000-0002-4721-9996
  surname: Xu
  fullname: Xu, Ping-Feng
  email: xupf900@nenu.edu.cn
  organization: Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, China
BookMark eNqNUMtOwzAQtFCRaAvfgH8gwY-QxAcOVcVLqsQFzpbjB3Wa2JUdWsrX41DEgQucdmd3Z0Y7MzBx3mkALjHKMcLlVZu3Jgi36azLCSIkRyxHiJyAKa4rlpGS0QmYonSaIUTJGZjF2CZYYYSmYFjAN2eN1QomlV7vfdhA4wNMLtK7nX4fu9h7P6xh3IoQNRROwc7vs9EVKi19v_XRDtY72BxgL1of7IcYcdZbZ_tvAEX3mjbDuj8Hp0Z0UV981zl4ubt9Xj5kq6f7x-VilUlSXA8ZqZQUspSqxhJVhFLZMMEqwxDWgjYN0axWytQNVUWhG1OWaSQwrWiBjSIVnYPqqCuDjzFow7fB9iIcOEZ8DI-3_Cc8PobHEeMpvMS8-cWUdvj6YgjCdv_gL458nd7bWR14lFY7qZUNWg5cefunxienzJhU
CitedBy_id crossref_primary_10_1007_s11042_023_16584_3
crossref_primary_10_1007_s11063_024_11463_w
crossref_primary_10_1007_s10489_025_06502_5
Cites_doi 10.1007/s12204-016-1765-5
10.1155/2014/656074
10.1109/TPAMI.2011.282
10.1109/TPAMI.2015.2465956
10.1016/j.jfranklin.2019.09.017
10.1109/JSEN.2020.2974725
10.1109/TSP.2012.2208955
10.1109/TIP.2016.2599290
10.1109/ACCESS.2018.2880454
10.1016/j.jfranklin.2018.12.013
10.1023/A:1004603514434
10.1023/A:1017522623963
10.1145/2674559
10.1007/s11263-016-0930-5
10.1109/TIP.2015.2511584
10.1198/0003130042836
10.1198/016214501753382273
10.1016/j.cviu.2013.11.009
10.1016/j.neucom.2017.12.034
10.1007/s10994-014-5469-5
10.1007/s11042-022-12509-8
10.1137/15M1027528
10.1109/TSP.2020.3011024
10.1109/TPAMI.2019.2929043
10.1109/TCSVT.2019.2908833
10.1145/1970392.1970395
10.1561/2200000016
10.1016/j.neunet.2016.09.005
10.1016/j.jfranklin.2020.03.032
10.1109/ACCESS.2018.2872688
10.1109/TIP.2015.2419084
10.1093/biomet/asaa066
10.1007/s13042-018-0814-9
10.1016/j.patcog.2015.01.024
10.1093/biomet/ast036
10.1137/090761793
10.1109/TSP.2019.2940121
10.1007/s11425-015-5081-6
ContentType Journal Article
Copyright 2022 The Franklin Institute
Copyright_xml – notice: 2022 The Franklin Institute
DBID AAYXX
CITATION
DOI 10.1016/j.jfranklin.2022.09.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
EndPage 9400
ExternalDocumentID 10_1016_j_jfranklin_2022_09_002
S0016003222006263
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AGQPQ
AHPAA
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c245t-27dcac6cd81c07233cb9a97f901ea3bb2e98ddf8b3d44ebf66b2ea137341fd273
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965532200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-0032
IngestDate Sat Nov 29 07:33:38 EST 2025
Tue Nov 18 22:25:23 EST 2025
Fri Feb 23 02:42:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c245t-27dcac6cd81c07233cb9a97f901ea3bb2e98ddf8b3d44ebf66b2ea137341fd273
ORCID 0000-0002-4721-9996
PageCount 25
ParticipantIDs crossref_primary_10_1016_j_jfranklin_2022_09_002
crossref_citationtrail_10_1016_j_jfranklin_2022_09_002
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2022_09_002
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Journal of the Franklin Institute
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ganesh, Lin, Wright, Wu, Chen, Ma (bib0015) 2009
Yang, Yang, Li (bib0026) 2020; 41
Chen, Zhao, Sun, Li, Feng (bib0040) 2022
Wright, Peng, Ma, Ganesh, Rao (bib0002) 2009
Wang, Wang, Hu, Yan (bib0051) 2015; 48
He, Yang, Wang (bib0054) 2000; 106
Na, Kolar, Koyejo (bib0013) 2021; 108
Abbott (bib0059) 2015
Liu, Zhao, Yao, Qi (bib0005) 2015; 24
Gu, Zhang, Zuo, Feng (bib0037) 2014
Gu, Xie, Meng, Zuo, Feng, Zhang (bib0036) 2017; 121
Zhang, Liu, Tian, Xu, Lu, Ma (bib0007) 2011
Z. Zhou, Y. Ma, Comments on efficient singular value thresholding computation, 2020. Available
Lin, Liu, Li (bib0055) 2015; 99
Bouwmans, Zahzah (bib0003) 2014; 122
Netrapalli, UN, Sanghavi, Anandkumar, Jain (bib0045) 2014
Bartle (bib0060) 1976
Chandrasekaran, Sanghavi, Parrilo, Willsky (bib0011) 2009
Wen, Ying, Liu, Trieu-Kien (bib0023) 2019; 67
Chandrasekaran, Parrilo, Willsky (bib0010) 2012; 40
Yang, Pong, Chen (bib0025) 2017; 10
Qian, Cao (bib0034) 2019; 10
Wen, Chu, Liu, Qiu (bib0022) 2018; 6
Zhou, Yang, Zhao, Yu (bib0008) 2015; 47
Sun, Xiang, Ye (bib0021) 2013
Shi, Nie, Lai, Guo (bib0043) 2018; 283
.
Dutta, Hanzely, Richtárik (bib0048) 2019
Zhang, Zhou, Wang, Ma (bib0058) 2014
Kang, Peng, Cheng (bib0039) 2015
Li, Dai, Cheng, Xu, Gui (bib0029) 2019; 356
Bouwmans, Aybat, Zahzah (bib0004) 2016
Cai, Cai, We (bib0046) 2019; 20
Zhang, Wang, Zhou, Ma (bib0063) 2019; 43
Yang, Yang, Han (bib0028) 2018; 6
Oh, Tai, Bazin, Kim, Kweon (bib0033) 2016; 38
Dong, Sun, Xu, Liu (bib0009) 2020; 20
Chen, Li (bib0042) 2015; 58
Yuan, Yang (bib0014) 2013; 9
Zhou, Tao (bib0044) 2011
Yang, Yang, Fan, Bao (bib0041) 2022
Li, Liu, Zhao, Cheng, Gui (bib0030) 2020; 357
Fan, Li (bib0061) 2001; 96
Wen, Ying, Liu, Qiu (bib0024) 2020; 30
Candès, Li, Ma, Wright (bib0001) 2011; 58
Xie, Gu, Liu, Zuo, Zhang, Zhang (bib0038) 2016; 25
Wang, Jodoin, Porikli, Konrad, Benezeth, Ishwar (bib0062) 2014
Chandrasekaran, Sanghavi, Parrilo, Willsky (bib0012) 2011; 21
Wang, Liao (bib0056) 2001; 109
Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, (2010). Available
Shao, Ge, Gan, Deng, Li (bib0050) 2014; 2014
Yang, Fan, Yang, Yang, Gui (bib0027) 2019; 356
Cao, Chen, Ye, Zhao, Zhou (bib0032) 2017; 85
Zhang, Guo, Zhao, Wang (bib0035) 2016; 21
Dutta, Hanzely, Liang, Richtárik (bib0049) 2020; 68
Hunter, Lange (bib0052) 2004; 58
Luong, Joukovsky, Eldar, Deligiannis (bib0006) 2021
Chartrand (bib0020) 2012; 60
Boyd, Parikh, Chu, Peleato, Eckstein (bib0031) 2011; 3
Lu, Tang, Yan, Lin (bib0017) 2014
Lu, Tang, Yan, Lin (bib0018) 2016; 25
Chen, Dong, Chan (bib0053) 2013; 100
Peng, Ganesh, Wright, Xu, Ma (bib0065) 2012; 34
Lu, Zhu, Xu, Yan, Lin (bib0019) 2015
Zhang, Wang, Gu (bib0047) 2018; vol. 84
Zhang, Wang, Zhou, Ma (bib0064) 2013
Wen (10.1016/j.jfranklin.2022.09.002_bib0022) 2018; 6
Wang (10.1016/j.jfranklin.2022.09.002_bib0056) 2001; 109
Qian (10.1016/j.jfranklin.2022.09.002_bib0034) 2019; 10
Zhang (10.1016/j.jfranklin.2022.09.002_bib0035) 2016; 21
Cai (10.1016/j.jfranklin.2022.09.002_bib0046) 2019; 20
Luong (10.1016/j.jfranklin.2022.09.002_bib0006) 2021
Li (10.1016/j.jfranklin.2022.09.002_bib0030) 2020; 357
Chen (10.1016/j.jfranklin.2022.09.002_bib0040) 2022
Xie (10.1016/j.jfranklin.2022.09.002_bib0038) 2016; 25
Bouwmans (10.1016/j.jfranklin.2022.09.002_bib0003) 2014; 122
Lu (10.1016/j.jfranklin.2022.09.002_bib0018) 2016; 25
Wen (10.1016/j.jfranklin.2022.09.002_bib0023) 2019; 67
Yang (10.1016/j.jfranklin.2022.09.002_bib0025) 2017; 10
Yang (10.1016/j.jfranklin.2022.09.002_bib0026) 2020; 41
Sun (10.1016/j.jfranklin.2022.09.002_bib0021) 2013
Dutta (10.1016/j.jfranklin.2022.09.002_bib0049) 2020; 68
Na (10.1016/j.jfranklin.2022.09.002_bib0013) 2021; 108
Oh (10.1016/j.jfranklin.2022.09.002_bib0033) 2016; 38
Wen (10.1016/j.jfranklin.2022.09.002_bib0024) 2020; 30
Shi (10.1016/j.jfranklin.2022.09.002_bib0043) 2018; 283
Shao (10.1016/j.jfranklin.2022.09.002_bib0050) 2014; 2014
Hunter (10.1016/j.jfranklin.2022.09.002_bib0052) 2004; 58
Cao (10.1016/j.jfranklin.2022.09.002_bib0032) 2017; 85
Zhou (10.1016/j.jfranklin.2022.09.002_bib0044) 2011
He (10.1016/j.jfranklin.2022.09.002_bib0054) 2000; 106
Peng (10.1016/j.jfranklin.2022.09.002_bib0065) 2012; 34
Lu (10.1016/j.jfranklin.2022.09.002_bib0017) 2014
Boyd (10.1016/j.jfranklin.2022.09.002_bib0031) 2011; 3
Fan (10.1016/j.jfranklin.2022.09.002_bib0061) 2001; 96
Yang (10.1016/j.jfranklin.2022.09.002_bib0027) 2019; 356
Zhang (10.1016/j.jfranklin.2022.09.002_bib0047) 2018; vol. 84
Ganesh (10.1016/j.jfranklin.2022.09.002_bib0015) 2009
10.1016/j.jfranklin.2022.09.002_bib0057
Yang (10.1016/j.jfranklin.2022.09.002_bib0041) 2022
10.1016/j.jfranklin.2022.09.002_bib0016
Chen (10.1016/j.jfranklin.2022.09.002_bib0053) 2013; 100
Chandrasekaran (10.1016/j.jfranklin.2022.09.002_bib0012) 2011; 21
Chandrasekaran (10.1016/j.jfranklin.2022.09.002_bib0010) 2012; 40
Liu (10.1016/j.jfranklin.2022.09.002_bib0005) 2015; 24
Zhang (10.1016/j.jfranklin.2022.09.002_bib0058) 2014
Kang (10.1016/j.jfranklin.2022.09.002_bib0039) 2015
Wang (10.1016/j.jfranklin.2022.09.002_bib0062) 2014
Chen (10.1016/j.jfranklin.2022.09.002_bib0042) 2015; 58
Wright (10.1016/j.jfranklin.2022.09.002_bib0002) 2009
Yang (10.1016/j.jfranklin.2022.09.002_bib0028) 2018; 6
Chandrasekaran (10.1016/j.jfranklin.2022.09.002_bib0011) 2009
Zhang (10.1016/j.jfranklin.2022.09.002_bib0064) 2013
Chartrand (10.1016/j.jfranklin.2022.09.002_bib0020) 2012; 60
Dong (10.1016/j.jfranklin.2022.09.002_bib0009) 2020; 20
Yuan (10.1016/j.jfranklin.2022.09.002_bib0014) 2013; 9
Lin (10.1016/j.jfranklin.2022.09.002_bib0055) 2015; 99
Wang (10.1016/j.jfranklin.2022.09.002_bib0051) 2015; 48
Zhang (10.1016/j.jfranklin.2022.09.002_bib0063) 2019; 43
Abbott (10.1016/j.jfranklin.2022.09.002_bib0059) 2015
Gu (10.1016/j.jfranklin.2022.09.002_bib0036) 2017; 121
Candès (10.1016/j.jfranklin.2022.09.002_bib0001) 2011; 58
Li (10.1016/j.jfranklin.2022.09.002_bib0029) 2019; 356
Zhang (10.1016/j.jfranklin.2022.09.002_bib0007) 2011
Zhou (10.1016/j.jfranklin.2022.09.002_bib0008) 2015; 47
Bartle (10.1016/j.jfranklin.2022.09.002_bib0060) 1976
Lu (10.1016/j.jfranklin.2022.09.002_bib0019) 2015
Gu (10.1016/j.jfranklin.2022.09.002_bib0037) 2014
Netrapalli (10.1016/j.jfranklin.2022.09.002_bib0045) 2014
Bouwmans (10.1016/j.jfranklin.2022.09.002_bib0004) 2016
Dutta (10.1016/j.jfranklin.2022.09.002_bib0048) 2019
References_xml – volume: 67
  start-page: 5402
  year: 2019
  end-page: 5416
  ident: bib0023
  article-title: Nonconvex regularized robust PCA using the proximal block coordinate descent algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 108
  start-page: 425
  year: 2021
  end-page: 442
  ident: bib0013
  article-title: Estimating differential latent variable graphical models with applications to brain connectivity
  publication-title: Biometrika
– volume: 10
  start-page: 1341
  year: 2019
  end-page: 1355
  ident: bib0034
  article-title: Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib0031
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 38
  start-page: 744
  year: 2016
  end-page: 758
  ident: bib0033
  article-title: Partial sum minimization of singular values in robust PCA: algorithm and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 5810
  year: 2012
  end-page: 5819
  ident: bib0020
  article-title: Nonconvex splitting for regularized low-rank + sparse decomposition
  publication-title: IEEE Trans. Signal Process.
– start-page: 311
  year: 2013
  end-page: 319
  ident: bib0021
  article-title: Robust principal component analysis via capped norms
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2022
  ident: bib0040
  article-title: Moving object detection via RPCA framework using non-convex low-rank approximation and total variational regularization
  publication-title: Signal Image Video Process.
– year: 1976
  ident: bib0060
  article-title: The Elements of Real Analysis
– volume: 43
  start-page: 238
  year: 2019
  end-page: 255
  ident: bib0063
  article-title: Robust low-rank tensor recovery with rectification and alignment
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 69883
  year: 2018
  end-page: 69906
  ident: bib0022
  article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning
  publication-title: IEEE Access,
– volume: 47
  start-page: 36
  year: 2015
  ident: bib0008
  article-title: Low-rank modeling and its applications in image analysis
  publication-title: ACM Comput. Surv.
– start-page: 1805
  year: 2015
  end-page: 1811
  ident: bib0019
  article-title: Generalized singular value thresholding
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 100
  start-page: 901
  year: 2013
  end-page: 920
  ident: bib0053
  article-title: Reduced rank regression via adaptive nuclear norm penalization
  publication-title: Biometrika
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: bib0061
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 2014
  start-page: 656074
  year: 2014
  ident: bib0050
  article-title: A generalized robust minimization framework for low-rank matrix recovery
  publication-title: Math. Probl. Eng.
– volume: 109
  start-page: 415
  year: 2001
  end-page: 429
  ident: bib0056
  article-title: Decomposition method with a variable parameter for a class of monotone variational inequality problems
  publication-title: J. Optim. Theory Appl.
– start-page: 1468
  year: 2019
  end-page: 1476
  ident: bib0048
  article-title: A nonconvex projection method for robust PCA
  publication-title: Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)
– volume: 9
  start-page: 167
  year: 2013
  end-page: 180
  ident: bib0014
  article-title: Sparse and low-rank matrix decomposition via alternating direction method
  publication-title: Pacific J. Optim.
– volume: 283
  start-page: 205
  year: 2018
  end-page: 213
  ident: bib0043
  article-title: Robust principal component analysis via optimal mean by joint
  publication-title: Neurocomputing
– volume: 48
  start-page: 3135
  year: 2015
  end-page: 3144
  ident: bib0051
  article-title: Visual data denoising with a unified schatten-
  publication-title: Pattern Recognit.
– year: 2014
  ident: bib0045
  article-title: Non-convex robust PCA
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2862
  year: 2014
  end-page: 2869
  ident: bib0037
  article-title: Weighted nuclear norm minimization with application to image denoising
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 21
  start-page: 572
  year: 2011
  end-page: 596
  ident: bib0012
  article-title: Rank-sparsity incoherence for matrix decomposition
  publication-title: SIAM J. Optim.
– year: 2009
  ident: bib0002
  article-title: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 40
  start-page: 1935
  year: 2012
  end-page: 1967
  ident: bib0010
  article-title: Latent variable graphical model selection via convex optimization
  publication-title: Ann. Stat.
– volume: 58
  start-page: 30
  year: 2004
  end-page: 37
  ident: bib0052
  article-title: A tutorial on MM algorithms
  publication-title: Am. Stat.
– start-page: 33
  year: 2011
  end-page: 40
  ident: bib0044
  article-title: GoDec: randomized low-rank & sparse matrix decomposition in noisy case
  publication-title: Proceedings of the 28th International Conference on Machine Learning, ICML 2011
– volume: 25
  start-page: 4842
  year: 2016
  end-page: 4857
  ident: bib0038
  article-title: Weighted schatten
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 2233
  year: 2012
  end-page: 2246
  ident: bib0065
  article-title: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 356
  start-page: 2353
  year: 2019
  end-page: 2371
  ident: bib0029
  article-title: Multiple-prespecified-dictionary sparse representation for compressive sensing image reconstruction with nonconvex regularization
  publication-title: J. Franklin Inst.
– volume: 85
  start-page: 10
  year: 2017
  end-page: 20
  ident: bib0032
  article-title: Recovering low-rank and sparse matrix based on the truncated nuclear norm
  publication-title: Neural Netw.
– start-page: 1637
  year: 2013
  end-page: 1645
  ident: bib0064
  article-title: Simultaneous rectification and alignment via robust recovery of low-rank tensors
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– start-page: 211
  year: 2015
  end-page: 220
  ident: bib0039
  article-title: Robust PCA via nonconvex rank approximation
  publication-title: 2015 IEEE International Conference on Data Mining
– volume: 24
  start-page: 2502
  year: 2015
  end-page: 2514
  ident: bib0005
  article-title: Background subtraction based on low-rank and structured sparse decomposition
  publication-title: IEEE Trans. Image Process.
– start-page: 213
  year: 2009
  end-page: 216
  ident: bib0015
  article-title: Fast algorithms for recovering a corrupted low-rank matrix
  publication-title: 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
– reference: Z. Zhou, Y. Ma, Comments on efficient singular value thresholding computation, 2020. Available:
– volume: 106
  start-page: 337
  year: 2000
  end-page: 356
  ident: bib0054
  article-title: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities
  publication-title: J. Optim. Theory Appl.
– start-page: 1432
  year: 2021
  end-page: 1436
  ident: bib0006
  article-title: A deep-unfolded reference-based RPCA network for video foreground-background separation
  publication-title: 2020 28th European Signal Processing Conference (EUSIPCO)
– volume: 25
  start-page: 829
  year: 2016
  end-page: 839
  ident: bib0018
  article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm
  publication-title: IEEE Trans. Image Process.
– year: 2016
  ident: bib0004
  article-title: Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing
– volume: 356
  start-page: 10138
  year: 2019
  end-page: 10154
  ident: bib0027
  article-title: Generalized singular value thresholding operator based nonconvex low-rank and sparse decomposition for moving object detection
  publication-title: J. Franklin Inst.
– volume: 58
  start-page: 2643
  year: 2015
  end-page: 2654
  ident: bib0042
  article-title: Stable recovery of low-rank matrix via nonconvex schatten
  publication-title: Sci. China Math.
– volume: 10
  start-page: 74
  year: 2017
  end-page: 110
  ident: bib0025
  article-title: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction
  publication-title: SIAM J. Imaging Sci.
– volume: 99
  start-page: 287
  year: 2015
  end-page: 325
  ident: bib0055
  article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
  publication-title: Mach. Learn.
– start-page: 1362
  year: 2014
  end-page: 1368
  ident: bib0058
  article-title: Hybrid singular value thresholding for tensor completion
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 357
  start-page: 6370
  year: 2020
  end-page: 6405
  ident: bib0030
  article-title: Nonconvex nonsmooth low-rank minimization for generalized image compressed sensing via group sparse representation
  publication-title: J. Franklin Inst.
– start-page: 1673
  year: 2011
  end-page: 1680
  ident: bib0007
  article-title: Image classification by non-negative sparse coding, low-rank and sparse decomposition
  publication-title: CVPR 2011
– year: 2022
  ident: bib0041
  article-title: Truncated
  publication-title: Multimed. Tools Appl.
– volume: 30
  start-page: 1497
  year: 2020
  end-page: 1510
  ident: bib0024
  article-title: Robust PCA using generalized nonconvex regularization
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 41
  start-page: 250
  year: 2020
  end-page: 258
  ident: bib0026
  article-title: Video foreground-background separation based on generalized nonconvex robust principal component analysis
  publication-title: Chinese J. Sci. Instrum.
– start-page: 1493
  year: 2009
  end-page: 1498
  ident: bib0011
  article-title: Sparse and low-rank matrix decompositions
  publication-title: Proceedings of the 15th IFAC Symposium on System Identification
– volume: 21
  start-page: 576
  year: 2016
  end-page: 583
  ident: bib0035
  article-title: Robust principal component analysis via truncated nuclear norm minimization
  publication-title: J. Shanghai Jiaotong University (Sci.)
– reference: Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, (2010). Available:
– year: 2015
  ident: bib0059
  article-title: Understanding Analysis
– reference: .
– start-page: 387
  year: 2014
  end-page: 394
  ident: bib0062
  article-title: CDnet 2014: an expanded change detection benchmark dataset
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– volume: 121
  start-page: 183
  year: 2017
  end-page: 208
  ident: bib0036
  article-title: Weighted nuclear norm minimization and its applications to low level vision
  publication-title: Int. J. Comput. Vis.
– volume: 58
  start-page: 11
  year: 2011
  ident: bib0001
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– volume: 6
  start-page: 56945
  year: 2018
  end-page: 56953
  ident: bib0028
  article-title: Alternating direction method of multipliers for sparse and low-rank decomposition based on nonconvex nonsmooth weighted nuclear norm
  publication-title: IEEE Access
– volume: 122
  start-page: 22
  year: 2014
  end-page: 34
  ident: bib0003
  article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance
  publication-title: Comput. Vis. Image Underst.
– volume: 68
  start-page: 6128
  year: 2020
  end-page: 6141
  ident: bib0049
  article-title: Best pair formulation & accelerated scheme for non-convex principal component pursuit
  publication-title: IEEE Trans. Signal Process.
– volume: 20
  start-page: 685
  year: 2019
  end-page: 717
  ident: bib0046
  article-title: Accelerated alternating projections for robust principal component analysis
  publication-title: J. Mach. Learn. Res.
– volume: vol. 84
  start-page: 1097
  year: 2018
  end-page: 1107
  ident: bib0047
  article-title: A unified framework for nonconvex low-rank plus sparse matrix recovery
  publication-title: Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics
– volume: 20
  start-page: 5845
  year: 2020
  end-page: 5854
  ident: bib0009
  article-title: A low-rank and sparse decomposition-based method of improving the accuracy of sub-pixel grayscale centroid extraction for spot images
  publication-title: IEEE Sens. J.
– start-page: 4130
  year: 2014
  end-page: 4137
  ident: bib0017
  article-title: Generalized nonconvex nonsmooth low-rank minimization
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 21
  start-page: 576
  issue: 5
  year: 2016
  ident: 10.1016/j.jfranklin.2022.09.002_bib0035
  article-title: Robust principal component analysis via truncated nuclear norm minimization
  publication-title: J. Shanghai Jiaotong University (Sci.)
  doi: 10.1007/s12204-016-1765-5
– volume: 2014
  start-page: 656074
  year: 2014
  ident: 10.1016/j.jfranklin.2022.09.002_bib0050
  article-title: A generalized robust minimization framework for low-rank matrix recovery
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/656074
– volume: 34
  start-page: 2233
  issue: 11
  year: 2012
  ident: 10.1016/j.jfranklin.2022.09.002_bib0065
  article-title: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.282
– volume: 38
  start-page: 744
  issue: 4
  year: 2016
  ident: 10.1016/j.jfranklin.2022.09.002_bib0033
  article-title: Partial sum minimization of singular values in robust PCA: algorithm and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2465956
– volume: 356
  start-page: 10138
  issue: 16
  year: 2019
  ident: 10.1016/j.jfranklin.2022.09.002_bib0027
  article-title: Generalized singular value thresholding operator based nonconvex low-rank and sparse decomposition for moving object detection
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.09.017
– volume: 20
  start-page: 5845
  issue: 11
  year: 2020
  ident: 10.1016/j.jfranklin.2022.09.002_bib0009
  article-title: A low-rank and sparse decomposition-based method of improving the accuracy of sub-pixel grayscale centroid extraction for spot images
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2974725
– start-page: 1468
  year: 2019
  ident: 10.1016/j.jfranklin.2022.09.002_bib0048
  article-title: A nonconvex projection method for robust PCA
– volume: 60
  start-page: 5810
  issue: 11
  year: 2012
  ident: 10.1016/j.jfranklin.2022.09.002_bib0020
  article-title: Nonconvex splitting for regularized low-rank + sparse decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2208955
– ident: 10.1016/j.jfranklin.2022.09.002_bib0057
– volume: 25
  start-page: 4842
  issue: 10
  year: 2016
  ident: 10.1016/j.jfranklin.2022.09.002_bib0038
  article-title: Weighted schatten p-norm minimization for image denoising and background subtraction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2599290
– volume: 6
  start-page: 69883
  year: 2018
  ident: 10.1016/j.jfranklin.2022.09.002_bib0022
  article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning
  publication-title: IEEE Access,
  doi: 10.1109/ACCESS.2018.2880454
– volume: 356
  start-page: 2353
  issue: 4
  year: 2019
  ident: 10.1016/j.jfranklin.2022.09.002_bib0029
  article-title: Multiple-prespecified-dictionary sparse representation for compressive sensing image reconstruction with nonconvex regularization
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2018.12.013
– volume: 106
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.jfranklin.2022.09.002_bib0054
  article-title: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1004603514434
– start-page: 211
  year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0039
  article-title: Robust PCA via nonconvex rank approximation
– ident: 10.1016/j.jfranklin.2022.09.002_bib0016
– start-page: 1432
  year: 2021
  ident: 10.1016/j.jfranklin.2022.09.002_bib0006
  article-title: A deep-unfolded reference-based RPCA network for video foreground-background separation
– volume: 109
  start-page: 415
  issue: 2
  year: 2001
  ident: 10.1016/j.jfranklin.2022.09.002_bib0056
  article-title: Decomposition method with a variable parameter for a class of monotone variational inequality problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017522623963
– volume: 9
  start-page: 167
  issue: 1
  year: 2013
  ident: 10.1016/j.jfranklin.2022.09.002_bib0014
  article-title: Sparse and low-rank matrix decomposition via alternating direction method
  publication-title: Pacific J. Optim.
– volume: 47
  start-page: 36
  issue: 2
  year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0008
  article-title: Low-rank modeling and its applications in image analysis
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2674559
– volume: vol. 84
  start-page: 1097
  year: 2018
  ident: 10.1016/j.jfranklin.2022.09.002_bib0047
  article-title: A unified framework for nonconvex low-rank plus sparse matrix recovery
– volume: 121
  start-page: 183
  issue: 2
  year: 2017
  ident: 10.1016/j.jfranklin.2022.09.002_bib0036
  article-title: Weighted nuclear norm minimization and its applications to low level vision
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0930-5
– volume: 25
  start-page: 829
  issue: 2
  year: 2016
  ident: 10.1016/j.jfranklin.2022.09.002_bib0018
  article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2511584
– volume: 58
  start-page: 30
  issue: 1
  year: 2004
  ident: 10.1016/j.jfranklin.2022.09.002_bib0052
  article-title: A tutorial on MM algorithms
  publication-title: Am. Stat.
  doi: 10.1198/0003130042836
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 10.1016/j.jfranklin.2022.09.002_bib0061
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– year: 2009
  ident: 10.1016/j.jfranklin.2022.09.002_bib0002
  article-title: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization
– volume: 40
  start-page: 1935
  issue: 4
  year: 2012
  ident: 10.1016/j.jfranklin.2022.09.002_bib0010
  article-title: Latent variable graphical model selection via convex optimization
  publication-title: Ann. Stat.
– volume: 122
  start-page: 22
  year: 2014
  ident: 10.1016/j.jfranklin.2022.09.002_bib0003
  article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.11.009
– volume: 283
  start-page: 205
  year: 2018
  ident: 10.1016/j.jfranklin.2022.09.002_bib0043
  article-title: Robust principal component analysis via optimal mean by joint ℓ2,1 and schatten p-norms minimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.034
– start-page: 33
  year: 2011
  ident: 10.1016/j.jfranklin.2022.09.002_bib0044
  article-title: GoDec: randomized low-rank & sparse matrix decomposition in noisy case
– volume: 99
  start-page: 287
  issue: 2
  year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0055
  article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-014-5469-5
– year: 2016
  ident: 10.1016/j.jfranklin.2022.09.002_bib0004
– year: 1976
  ident: 10.1016/j.jfranklin.2022.09.002_bib0060
– year: 2022
  ident: 10.1016/j.jfranklin.2022.09.002_bib0041
  article-title: Truncated γ norm-based low-rank and sparse decomposition
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12509-8
– volume: 10
  start-page: 74
  issue: 1
  year: 2017
  ident: 10.1016/j.jfranklin.2022.09.002_bib0025
  article-title: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/15M1027528
– volume: 68
  start-page: 6128
  year: 2020
  ident: 10.1016/j.jfranklin.2022.09.002_bib0049
  article-title: Best pair formulation & accelerated scheme for non-convex principal component pursuit
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3011024
– volume: 43
  start-page: 238
  issue: 1
  year: 2019
  ident: 10.1016/j.jfranklin.2022.09.002_bib0063
  article-title: Robust low-rank tensor recovery with rectification and alignment
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2929043
– volume: 30
  start-page: 1497
  issue: 6
  year: 2020
  ident: 10.1016/j.jfranklin.2022.09.002_bib0024
  article-title: Robust PCA using generalized nonconvex regularization
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2908833
– volume: 58
  start-page: 11
  issue: 3
  year: 2011
  ident: 10.1016/j.jfranklin.2022.09.002_bib0001
  article-title: Robust principal component analysis?
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.jfranklin.2022.09.002_bib0031
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 85
  start-page: 10
  year: 2017
  ident: 10.1016/j.jfranklin.2022.09.002_bib0032
  article-title: Recovering low-rank and sparse matrix based on the truncated nuclear norm
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.09.005
– volume: 20
  start-page: 685
  issue: 1
  year: 2019
  ident: 10.1016/j.jfranklin.2022.09.002_bib0046
  article-title: Accelerated alternating projections for robust principal component analysis
  publication-title: J. Mach. Learn. Res.
– volume: 357
  start-page: 6370
  issue: 10
  year: 2020
  ident: 10.1016/j.jfranklin.2022.09.002_bib0030
  article-title: Nonconvex nonsmooth low-rank minimization for generalized image compressed sensing via group sparse representation
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.03.032
– start-page: 4130
  year: 2014
  ident: 10.1016/j.jfranklin.2022.09.002_bib0017
  article-title: Generalized nonconvex nonsmooth low-rank minimization
– start-page: 1637
  year: 2013
  ident: 10.1016/j.jfranklin.2022.09.002_bib0064
  article-title: Simultaneous rectification and alignment via robust recovery of low-rank tensors
– volume: 6
  start-page: 56945
  year: 2018
  ident: 10.1016/j.jfranklin.2022.09.002_bib0028
  article-title: Alternating direction method of multipliers for sparse and low-rank decomposition based on nonconvex nonsmooth weighted nuclear norm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872688
– start-page: 1362
  year: 2014
  ident: 10.1016/j.jfranklin.2022.09.002_bib0058
  article-title: Hybrid singular value thresholding for tensor completion
– volume: 24
  start-page: 2502
  issue: 8
  year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0005
  article-title: Background subtraction based on low-rank and structured sparse decomposition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2419084
– volume: 108
  start-page: 425
  issue: 2
  year: 2021
  ident: 10.1016/j.jfranklin.2022.09.002_bib0013
  article-title: Estimating differential latent variable graphical models with applications to brain connectivity
  publication-title: Biometrika
  doi: 10.1093/biomet/asaa066
– volume: 10
  start-page: 1341
  issue: 6
  year: 2019
  ident: 10.1016/j.jfranklin.2022.09.002_bib0034
  article-title: Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0814-9
– start-page: 387
  year: 2014
  ident: 10.1016/j.jfranklin.2022.09.002_bib0062
  article-title: CDnet 2014: an expanded change detection benchmark dataset
– start-page: 1673
  year: 2011
  ident: 10.1016/j.jfranklin.2022.09.002_bib0007
  article-title: Image classification by non-negative sparse coding, low-rank and sparse decomposition
– year: 2014
  ident: 10.1016/j.jfranklin.2022.09.002_bib0045
  article-title: Non-convex robust PCA
– start-page: 311
  year: 2013
  ident: 10.1016/j.jfranklin.2022.09.002_bib0021
  article-title: Robust principal component analysis via capped norms
– start-page: 213
  year: 2009
  ident: 10.1016/j.jfranklin.2022.09.002_bib0015
  article-title: Fast algorithms for recovering a corrupted low-rank matrix
– volume: 48
  start-page: 3135
  issue: 10
  year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0051
  article-title: Visual data denoising with a unified schatten-p norm and ℓq norm regularized principal component pursuit
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.01.024
– volume: 100
  start-page: 901
  issue: 4
  year: 2013
  ident: 10.1016/j.jfranklin.2022.09.002_bib0053
  article-title: Reduced rank regression via adaptive nuclear norm penalization
  publication-title: Biometrika
  doi: 10.1093/biomet/ast036
– year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0059
– start-page: 2862
  year: 2014
  ident: 10.1016/j.jfranklin.2022.09.002_bib0037
  article-title: Weighted nuclear norm minimization with application to image denoising
– volume: 21
  start-page: 572
  issue: 2
  year: 2011
  ident: 10.1016/j.jfranklin.2022.09.002_bib0012
  article-title: Rank-sparsity incoherence for matrix decomposition
  publication-title: SIAM J. Optim.
  doi: 10.1137/090761793
– volume: 41
  start-page: 250
  issue: 1
  year: 2020
  ident: 10.1016/j.jfranklin.2022.09.002_bib0026
  article-title: Video foreground-background separation based on generalized nonconvex robust principal component analysis
  publication-title: Chinese J. Sci. Instrum.
– start-page: 1805
  year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0019
  article-title: Generalized singular value thresholding
– volume: 67
  start-page: 5402
  issue: 20
  year: 2019
  ident: 10.1016/j.jfranklin.2022.09.002_bib0023
  article-title: Nonconvex regularized robust PCA using the proximal block coordinate descent algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2940121
– year: 2022
  ident: 10.1016/j.jfranklin.2022.09.002_bib0040
  article-title: Moving object detection via RPCA framework using non-convex low-rank approximation and total variational regularization
  publication-title: Signal Image Video Process.
– volume: 58
  start-page: 2643
  issue: 12
  year: 2015
  ident: 10.1016/j.jfranklin.2022.09.002_bib0042
  article-title: Stable recovery of low-rank matrix via nonconvex schatten p-minimization
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-015-5081-6
– start-page: 1493
  year: 2009
  ident: 10.1016/j.jfranklin.2022.09.002_bib0011
  article-title: Sparse and low-rank matrix decompositions
SSID ssj0017100
Score 2.3404253
Snippet Recovering a low-rank matrix and a sparse matrix from an observed matrix, known as sparse and low-rank decomposition (SLRD), is becoming a hot topic in recent...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 9376
Title A unified framework for nonconvex nonsmooth sparse and low-rank decomposition by majorization-minimization algorithm
URI https://dx.doi.org/10.1016/j.jfranklin.2022.09.002
Volume 359
WOSCitedRecordID wos000965532200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK7axkV-4K3ylDgX27xVaAh4mEAMqW-RHTtjVW_q0tH9EX4vx7HjpFKngRAvUeLITeLz9fiz_fkchN7KkiZMZZQoLRUMULKECB5nRDIpspIJzWXVJJtgZ2d8MhFfBoNf7V6Y6xlbLPh2K1b_1dRQBsa2W2f_wtzhR6EAzsHocASzw_GPDD8ebRaXlWWWVSu8arSEMM5vJOZbe3Y1Xy6tNn0F41q3gDBb_iQ2gftIGysz91ouy07ncrpc--2axIYimfuLkZxdwJ36x_wWimtJbZsVvpMldHPVxjmarwBRYq_aO5NNQ26hVyXQtBf9mQkY1MY7MxNhy0ynT2pccJwTcCXOBRvndTkThOYuVWLrlhMfKdzjr-9lgVLlvR7b5nbf2xu4iYnpybTyn3piX7OJaxvRrgMMssRvTdbtyC4-2b2leXIPHVCWCT5EB-NPp5PPYX3KxkRyfbz7mB3l4N7H7ec9PS5z_hg98hbCYweeJ2hgFk_Rw15oymeoHmMPIxxghAFGOMAIBxhhByMMMMItjPAOjLC6wbfCCAcYPUffP5yev_9IfIYOUtI0qwllupRlXmoelxGjSVIqIQWrgGQamShFjeBaV1wlOk2NqvIcimScMOBOlQbm_AIN4WXNIcI6N6k2XMlY01TyVMiYRhVQOJUaKpP4COVt-xWlD19vs6jMilanOC1Cwxe24YtIFNDwRygKFVcugsvdVd61Bio8EXUEswBk3VX5-F8qv0QPun_SKzSs1xvzGt0vr-vLq_Ubj8LfTJi6xA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+framework+for+nonconvex+nonsmooth+sparse+and+low-rank+decomposition+by+majorization-minimization+algorithm&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Zheng%2C+Qian-Zhen&rft.au=Xu%2C+Ping-Feng&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=0016-0032&rft.eissn=1879-2693&rft.volume=359&rft.issue=16&rft.spage=9376&rft.epage=9400&rft_id=info:doi/10.1016%2Fj.jfranklin.2022.09.002&rft.externalDocID=S0016003222006263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon