Reducing Computation Complexity in Optimization of Nanophotonic Structures Using Pruning

Inverse design of complex nanophotonic devices is a very computation-consuming task. Deep-learning-based approaches can facilitate this process. However, due to the lack of solid knowledge about the underlying complexity of the input-output relation for a selected class of nanostructures, it is comm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE photonics technology letters Ročník 36; číslo 4; s. 215 - 218
Hlavní autoři: Hadigheh Javani, Mohammad, Zandehshahvar, Mohammadreza, Adibi, Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-1135, 1941-0174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Inverse design of complex nanophotonic devices is a very computation-consuming task. Deep-learning-based approaches can facilitate this process. However, due to the lack of solid knowledge about the underlying complexity of the input-output relation for a selected class of nanostructures, it is common to select an over-parameterized neural network (NN) for modeling this relation. We present a novel pruning method based on removing weak nodes and connections in the original NN to simplify the input-output relation without imposing significant error. In addition to reducing the model complexity computations, the pruned network can be used to find valuable insight into the physics of device operation. To show the efficacy of our approach, we use it for modeling and inverse design of two classes of nanostructures with different complexities.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2023.3342631