CusADi: A GPU Parallelization Framework for Symbolic Expressions and Optimal Control

The parallelism afforded by GPUs presents significant advantages in training controllers through reinforcement learning (RL). However, integrating model-based optimization into this process remains challenging due to the complexity of formulating and solving optimization problems across thousands of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 10; H. 2; S. 899 - 906
Hauptverfasser: Jeon, Se Hwan, Hong, Seungwoo, Lee, Ho Jae, Khazoom, Charles, Kim, Sangbae
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!