Clustered Federated Multi-Task Learning: A Communication-and-Computation Efficient Sparse Sharing Approach

Federated multi-task learning (FMTL) is a promising technology to tackle one of the most severe non-independent and identically distributed (non-IID) data challenge in federated learning (FL), which treats each client as a single task and learns personalized models by exploiting task correlations. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 24; H. 6; S. 4824 - 4838
Hauptverfasser: Ai, Yuhan, Chen, Qimei, Zhu, Guangxu, Wen, Dingzhu, Jiang, Hao, Zeng, Jun, Li, Ming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Federated multi-task learning (FMTL) is a promising technology to tackle one of the most severe non-independent and identically distributed (non-IID) data challenge in federated learning (FL), which treats each client as a single task and learns personalized models by exploiting task correlations. However, the transmission of individual task models generally results in a significant amount of communication overhead compared with global model broadcasting. Furthermore, related works mainly focus on FMTLs with default and static relationships among tasks, which obliterates the non-IID data characteristic. To address these issues, we propose a novel Clustered FMTL mechanism via Sparse Sharing (FedSS). Specifically, we introduce an iterative model pruning approach that trains customized client models to deal with the non-IID issue. Thereafter, we divide clients into different tasks according to their model similarities to promote communication efficiency. Based on clustered tasks, we introduce a sparse sharing mechanism that allows clients to share model parameters dynamically among different tasks to further boost the training performance. On the other aspect, the infertile communication resources would degrade the FMTL performance by restricting the personalized model transmissions. Hence, we first theoretically analyze the convergence performance of the proposed FedSS, which quantitatively unveils the relationship between the local model training performance and communication resources. Thereafter, we formulate a communication-and-computation efficient optimization problem via a joint sparsity ratio assignment and bandwidth allocation strategy. Closed-form expressions for the optimal sparsity ratio and bandwidth allocation are derived based on Lyapunov optimization and block coordinate update (BCU) algorithms. Numerical results illustrate that the proposed FedSS outperforms the benchmarks, and achieves an efficient communication and computation performance.
AbstractList Federated multi-task learning (FMTL) is a promising technology to tackle one of the most severe non-independent and identically distributed (non-IID) data challenge in federated learning (FL), which treats each client as a single task and learns personalized models by exploiting task correlations. However, the transmission of individual task models generally results in a significant amount of communication overhead compared with global model broadcasting. Furthermore, related works mainly focus on FMTLs with default and static relationships among tasks, which obliterates the non-IID data characteristic. To address these issues, we propose a novel Clustered FMTL mechanism via Sparse Sharing (FedSS). Specifically, we introduce an iterative model pruning approach that trains customized client models to deal with the non-IID issue. Thereafter, we divide clients into different tasks according to their model similarities to promote communication efficiency. Based on clustered tasks, we introduce a sparse sharing mechanism that allows clients to share model parameters dynamically among different tasks to further boost the training performance. On the other aspect, the infertile communication resources would degrade the FMTL performance by restricting the personalized model transmissions. Hence, we first theoretically analyze the convergence performance of the proposed FedSS, which quantitatively unveils the relationship between the local model training performance and communication resources. Thereafter, we formulate a communication-and-computation efficient optimization problem via a joint sparsity ratio assignment and bandwidth allocation strategy. Closed-form expressions for the optimal sparsity ratio and bandwidth allocation are derived based on Lyapunov optimization and block coordinate update (BCU) algorithms. Numerical results illustrate that the proposed FedSS outperforms the benchmarks, and achieves an efficient communication and computation performance.
Author Wen, Dingzhu
Chen, Qimei
Li, Ming
Ai, Yuhan
Zeng, Jun
Zhu, Guangxu
Jiang, Hao
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Ai
  fullname: Ai, Yuhan
  email: aiyuhan@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Qimei
  orcidid: 0000-0003-2497-8911
  surname: Chen
  fullname: Chen, Qimei
  email: chenqimei@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Guangxu
  orcidid: 0000-0001-9532-9201
  surname: Zhu
  fullname: Zhu, Guangxu
  email: gxzhu@sribd.cn
  organization: Shenzhen Research Institute of Big Data, Shenzhen, China
– sequence: 4
  givenname: Dingzhu
  orcidid: 0000-0003-0538-5811
  surname: Wen
  fullname: Wen, Dingzhu
  email: wendzh@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 5
  givenname: Hao
  orcidid: 0000-0002-8533-1612
  surname: Jiang
  fullname: Jiang, Hao
  email: jh@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan, China
– sequence: 6
  givenname: Jun
  surname: Zeng
  fullname: Zeng, Jun
  email: 2021182120064@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan, China
– sequence: 7
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  email: mli@fiberhome.com
  organization: School of Electronic Information, Wuhan University, Wuhan, China
BookMark eNpNUD1PwzAQtVCRaAs7A4MlZhd_xglbFbWAVMTQIsbISS80pXWC7Qz8exzaAd1w707vQ3oTNLKtBYRuGZ0xRrOHzUc-45SrmVBSCpZeoDFTKiWcy3Q0YJEQxnVyhSbe7yllOlFqjPb5ofcBHGzxErbgTIjotT-EhmyM_8IrMM429vMRz3HeHo-9bSoTmtYSY7ckfro-_N14UddN1YANeN0Z5wGvd8ZFJZ53nWtNtbtGl7U5eLg57yl6Xy42-TNZvT295PMVqbhUgTAKKacJrTUziahUrVVpmMhSVUrNMqAMZCkzyktd0kRk1Mishm1CpaiY4kxM0f3JN8Z-9-BDsW97Z2NkITjTWidUDCx6YlWu9d5BXXSuORr3UzBaDI0WsdFiaLQ4NxoldydJAwD_6Fmc6PgLtPFzAA
CODEN ITWCAX
Cites_doi 10.1109/TWC.2021.3111707
10.1109/TCOMM.2021.3124961
10.1109/TWC.2021.3108197
10.1109/JIOT.2022.3228893
10.1109/TNNLS.2022.3224252
10.1109/TWC.2023.3342626
10.1145/3453142.3492909
10.1109/LCOMM.2022.3174295
10.1109/JIOT.2021.3136205
10.1109/JSAC.2023.3242727
10.1109/TWC.2019.2946245
10.1109/TVT.2023.3287355
10.1109/JSAC.2015.2481209
10.1109/JSAC.2021.3126076
10.1109/ICASSP.2014.6855096
10.1109/TWC.2020.3039309
10.1109/TNNLS.2019.2944481
10.1109/LCOMM.2023.3308334
10.1109/JIOT.2021.3095077
10.1109/TKDE.2021.3124599
10.1609/aaai.v34i05.6424
10.1109/JIOT.2022.3201310
10.1109/ICDE53745.2022.00077
10.1109/TMLCN.2023.3303292
10.1109/MVT.2020.3019650
10.1109/COMST.2020.2986024
10.1145/2872427.2883041
10.1007/s11432-022-3652-2
10.1109/ICC45855.2022.9838880
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2025.3544318
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 4838
ExternalDocumentID 10_1109_TWC_2025_3544318
10909031
Genre orig-research
GrantInformation_xml – fundername: Shanghai Sailing Program
  grantid: 23YF1427400
  funderid: 10.13039/100016096
– fundername: Key Research and Development Plan of Hubei Province
  grantid: 2023BCB041
– fundername: National Natural Science Foundation of China
  grantid: 62371313; 62401369
– fundername: Shenzhen-Hong Kong-Macau Technology Research Programme (Type C)
  grantid: SGDX20230821091559018
– fundername: National Key Research and Development Program of China
  grantid: 2024YFE0115900; 2024YFB2908001
  funderid: 10.13039/501100012166
– fundername: Wuhan Science and Technology Achievement Transformation Project
  grantid: 2024030803010178
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-10e82060f71a63c5f75ba13985b4719e01e4b4902b7b06390a49fed6043c15213
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506722000049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Thu Sep 25 23:40:54 EDT 2025
Sat Nov 29 07:48:16 EST 2025
Wed Aug 27 01:47:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-10e82060f71a63c5f75ba13985b4719e01e4b4902b7b06390a49fed6043c15213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8533-1612
0000-0003-2497-8911
0000-0001-9532-9201
0000-0003-0538-5811
PQID 3217776031
PQPubID 105736
PageCount 15
ParticipantIDs proquest_journals_3217776031
ieee_primary_10909031
crossref_primary_10_1109_TWC_2025_3544318
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref17
ref19
McMahan (ref6)
ref18
Fifty (ref16); 34
Ma (ref28) 2022
ref24
ref23
ref26
ref25
Smith (ref11)
ref20
ref22
ref21
Arivazhagan (ref10) 2019
ref27
ref29
ref8
ref7
Shen (ref13)
ref4
ref3
Li (ref9)
ref5
References_xml – start-page: 429
  volume-title: Proc. 3rd Mach. Learn. Syst. Conf.
  ident: ref9
  article-title: Federated optimization in heterogeneous networks
– year: 2022
  ident: ref28
  article-title: On the convergence of clustered federated learning
  publication-title: arXiv:2202.06187
– ident: ref33
  doi: 10.1109/TWC.2021.3111707
– ident: ref19
  doi: 10.1109/TCOMM.2021.3124961
– ident: ref8
  doi: 10.1109/TWC.2021.3108197
– ident: ref25
  doi: 10.1109/JIOT.2022.3228893
– ident: ref14
  doi: 10.1109/TNNLS.2022.3224252
– ident: ref31
  doi: 10.1109/TWC.2023.3342626
– ident: ref18
  doi: 10.1145/3453142.3492909
– ident: ref26
  doi: 10.1109/LCOMM.2022.3174295
– ident: ref23
  doi: 10.1109/JIOT.2021.3136205
– volume: 34
  start-page: 27503
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref16
  article-title: Efficiently identifying task groupings for multi-task learning
– ident: ref17
  doi: 10.1109/JSAC.2023.3242727
– ident: ref21
  doi: 10.1109/TWC.2019.2946245
– ident: ref20
  doi: 10.1109/TVT.2023.3287355
– ident: ref32
  doi: 10.1109/JSAC.2015.2481209
– ident: ref2
  doi: 10.1109/JSAC.2021.3126076
– ident: ref34
  doi: 10.1109/ICASSP.2014.6855096
– ident: ref22
  doi: 10.1109/TWC.2020.3039309
– ident: ref30
  doi: 10.1109/TNNLS.2019.2944481
– ident: ref29
  doi: 10.1109/LCOMM.2023.3308334
– ident: ref12
  doi: 10.1109/JIOT.2021.3095077
– ident: ref5
  doi: 10.1109/TKDE.2021.3124599
– year: 2019
  ident: ref10
  article-title: Federated learning with personalization layers
  publication-title: arXiv:1912.00818
– ident: ref15
  doi: 10.1609/aaai.v34i05.6424
– ident: ref24
  doi: 10.1109/JIOT.2022.3201310
– ident: ref7
  doi: 10.1109/ICDE53745.2022.00077
– ident: ref27
  doi: 10.1109/TMLCN.2023.3303292
– ident: ref1
  doi: 10.1109/MVT.2020.3019650
– start-page: 1273
  volume-title: Proc. Int. Conf. Artif. Intell. Stat. (AISTATS)
  ident: ref6
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref4
  doi: 10.1109/COMST.2020.2986024
– ident: ref36
  doi: 10.1145/2872427.2883041
– start-page: 4427
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: Federated multi-task learning
– ident: ref3
  doi: 10.1007/s11432-022-3652-2
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref13
  article-title: Variational multi-task learning with Gumbel-Softmax priors
– ident: ref35
  doi: 10.1109/ICC45855.2022.9838880
SSID ssj0017655
Score 2.4848514
Snippet Federated multi-task learning (FMTL) is a promising technology to tackle one of the most severe non-independent and identically distributed (non-IID) data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4824
SubjectTerms Adaptation models
Algorithms
bandwidth allocation
Bandwidths
Channel allocation
Clients
clustering
Communication
Computation
Computational modeling
Convergence
Correlation
Customization
Data models
Federated learning
Federated multi-task learning
model pruning
Multitasking
Optimization
sparse sharing
Sparsity
Training
Wireless communication
Title Clustered Federated Multi-Task Learning: A Communication-and-Computation Efficient Sparse Sharing Approach
URI https://ieeexplore.ieee.org/document/10909031
https://www.proquest.com/docview/3217776031
Volume 24
WOSCitedRecordID wos001506722000049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjywMLh1Yyeu2aqqFVOFRBHdIttxEA-lVR_8fu6ctCpCDGyJEkeWz75H7u77CLmVmVGRdYJZHwsmPQSsYAU9y6x1lhswIB0XyCbUaNSdTPRj1aweemG896H4zLfwMuTys6lb4a-yNhYRao5d07tKJWWz1iZloJJAcQonGIll1CYnyXV7_NKHSDCKWwLR3pDfY8sGBVKVX5o4mJfh0T8ndkwOKz-S9krBn5AdX5ySgy10wTPy3v9cIQyCz-gQISPAq8xoaLhlY7P4oBW06us97dEffSLMFBkr6R7CPR0EnAmYAn2aQSDsKcI8w0jaqxDJ6-R5OBj3H1hFrcBcJOMlKF-PwO08Vx2TCBfnKrYGnMFubMFaaRCZl1ZqHlll0YnhRurcZwmXwqHFF-ekVkwLf0GoNKBreZ6o3ORSGKu1QWzRiIvYWuWTBrlbL3Y6KxE00hB5cJ2CYFIUTFoJpkHquLhb75Xr2iDNtXjS6owtUgHRFGwDeHz5x7Arso9fLyu7mqS2nK_8NdlzX8u3xfwmbJ9vqLjCVQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBfXg58Tp1By8eMiWNWmzeBtjY-IcghN3K0maih90Yx_-_eal3ZiIB28tNDS817yPvvd-P4SueaJEoA0j2oaMcOsSVucFLUm0Npoq50AaxpNNiMGgORrJx2JY3c_CWGt985mtwaWv5Sdjs4BfZXVoIpQUpqY3Q84Dmo9rrYoGIvIkp-4MA7WMWFUlqawPX9ouFwzCGgO8N2D4WPNCnlblly32Dqa7_8-tHaC9IpLErVz1h2jDZkdodw1f8Bi9tz8XAIRgE9wF0AgXVybYj9ySoZp94AJc9fUWt_CPSRGisoTkhA_-Hnc80oTbAn6auFTYYgB6ditxq8AkL6PnbmfY7pGCXIGYgIdzZ34tQLfTVDRUxEyYilArFw42Q-38lXRKs1xzSQMtNIQxVHGZ2iSinBnw-ewElbJxZk8R5spZW5pGIlUpZ0pLqQBdNKAs1FrYqIJulsKOJzmGRuxzDypjp5gYFBMXiqmgMgh37blcrhVUXaonLk7ZLGYunxICeLLP_lh2hbZ7w4d-3L8b3J-jHXhT3udVRaX5dGEv0Jb5mr_Nppf-U_oG8YnFnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustered+Federated+Multi-Task+Learning%3A+A+Communication-and-Computation+Efficient+Sparse+Sharing+Approach&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Ai%2C+Yuhan&rft.au=Chen%2C+Qimei&rft.au=Zhu%2C+Guangxu&rft.au=Wen%2C+Dingzhu&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=24&rft.issue=6&rft.spage=4824&rft.epage=4838&rft_id=info:doi/10.1109%2FTWC.2025.3544318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon