Multinuclear PFGSTE NMR description of 39K, 23Na, 7Li, and 1H specific activation energies governing diffusion in alkali nitrite solutions

[Display omitted] •Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable spin-lattice and spin-spin relaxation coefficients permissive for 39K NMR diffusometry•Found links between alkali cation self-diffusion, water...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of magnetic resonance (1997) Ročník 364; s. 107707
Hlavní autori: Graham, Trent R., Kennedy, Ashley R., Felsted, Robert G., Colina-Ruiz, Roberto A., Nienhuis, Emily T., Reynolds, Jacob G., Pearce, Carolyn I.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.07.2024
Elsevier
Predmet:
ISSN:1090-7807, 1096-0856, 1096-0856
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable spin-lattice and spin-spin relaxation coefficients permissive for 39K NMR diffusometry•Found links between alkali cation self-diffusion, water activation energy, and hydration enthalpy in concentrated alkali nitrite solutions While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin–lattice and spin–spin relaxation coefficients on the order of 60–100 ms and 50–100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.
AbstractList While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin-lattice and spin-spin relaxation coefficients on the order of 60-100 ms and 50-100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin-lattice and spin-spin relaxation coefficients on the order of 60-100 ms and 50-100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.
While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Further, analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin–lattice and spin–spin relaxation coefficients on the order of 60–100 ms and 50–100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.
[Display omitted] •Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable spin-lattice and spin-spin relaxation coefficients permissive for 39K NMR diffusometry•Found links between alkali cation self-diffusion, water activation energy, and hydration enthalpy in concentrated alkali nitrite solutions While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin–lattice and spin–spin relaxation coefficients on the order of 60–100 ms and 50–100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.
ArticleNumber 107707
Author Colina-Ruiz, Roberto A.
Graham, Trent R.
Reynolds, Jacob G.
Kennedy, Ashley R.
Pearce, Carolyn I.
Felsted, Robert G.
Nienhuis, Emily T.
Author_xml – sequence: 1
  givenname: Trent R.
  orcidid: 0000-0001-8907-8004
  surname: Graham
  fullname: Graham, Trent R.
  email: trent.graham@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 2
  givenname: Ashley R.
  surname: Kennedy
  fullname: Kennedy, Ashley R.
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 3
  givenname: Robert G.
  surname: Felsted
  fullname: Felsted, Robert G.
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 4
  givenname: Roberto A.
  surname: Colina-Ruiz
  fullname: Colina-Ruiz, Roberto A.
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 5
  givenname: Emily T.
  surname: Nienhuis
  fullname: Nienhuis, Emily T.
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
– sequence: 6
  givenname: Jacob G.
  surname: Reynolds
  fullname: Reynolds, Jacob G.
  organization: Washington River Protection Solutions, LLC, Richland, WA 99354, USA
– sequence: 7
  givenname: Carolyn I.
  surname: Pearce
  fullname: Pearce, Carolyn I.
  organization: Pacific Northwest National Laboratory, Richland, WA 99354, USA
BackLink https://www.osti.gov/servlets/purl/2476327$$D View this record in Osti.gov
BookMark eNp9kc9u1DAQhyNUJNrCA3CzOHHYLLbjZGJxQlX_ILYFQTlbljNeZsnai52sxCvw1CQbThx6sq35vpFnfhfFWYgBi-K14GvBRfNut97t01pyqaY3AIdnxbnguil5WzdnpzsvoeXworjIece5EDXw8-LP_dgPFEbXo03sy83tt8dr9nD_lXWYXaLDQDGw6FmlP62YrB7sisGGVsyGjok7lg_oyJNj1g10tCcaA6YtYWbbeMQUKGxZR96PeS5SYLb_aXtigYZEA7Ic-3H28sviubd9xlf_zsvi-83149Vdufl8-_Hqw6Z0UtVQisopsAodKOdVBdDWUoLybVc7lNoqrbXXWjTaNlz7ziOA077RqptKgNVl8WbpG_NAJrvpE-6HiyGgG4xU0FQSJujtAh1S_DViHsyessO-twHjmE3FQci2qppqQmFBXYo5J_RmanlaxZAs9UZwM0dkdmaKyMwRmSWiyRT_mYdEe5t-P-m8XxycVnQkTPMEGBx2lOYBukhP2H8B6V2qKg
CitedBy_id crossref_primary_10_1038_s42004_025_01546_7
crossref_primary_10_1016_j_jmr_2025_107890
Cites_doi 10.1039/C9CP04714J
10.1021/acs.chemmater.8b03944
10.1063/1.1695690
10.1021/je3003089
10.1039/D3CC04168A
10.1021/ed054p540
10.1515/zna-1974-1208
10.1021/ac50048a040
10.1002/mrc.5218
10.1021/je00028a014
10.1002/mrc.1079
10.1021/acs.jpclett.9b01416
10.1161/01.RES.84.8.913
10.1002/(SICI)1099-0534(1998)10:4<197::AID-CMR1>3.0.CO;2-S
10.1002/eem2.12174
10.1039/D1RA02301B
10.1021/acs.chemmater.1c02891
10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U
10.1021/acs.analchem.1c04197
10.1021/acs.jpcb.8b10145
10.1039/D0EE02917C
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Inc.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Inc.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Energy Frontier Research Centers (EFRC) (United States). Interfacial Dynamics in Radioactive Environments and Materials (IDREAM)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– name: Energy Frontier Research Centers (EFRC) (United States). Interfacial Dynamics in Radioactive Environments and Materials (IDREAM)
DBID AAYXX
CITATION
7X8
OIOZB
OTOTI
DOI 10.1016/j.jmr.2024.107707
DatabaseName CrossRef
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-0856
ExternalDocumentID 2476327
10_1016_j_jmr_2024_107707
S1090780724000910
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABNEU
ABUDA
ABXDB
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
ADUVX
ADVLN
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJRQY
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSU
SSZ
T5K
UPT
UQL
XPP
YQT
ZCG
ZGI
ZXP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7X8
AGCQF
AGRNS
OIOZB
OTOTI
ID FETCH-LOGICAL-c2457-13c47a4ec74cf4377852274f8d5ce29a4999f99169a609fdfe77c9f694d4997e3
ISSN 1090-7807
1096-0856
IngestDate Mon Jun 23 02:30:22 EDT 2025
Sun Sep 28 02:08:11 EDT 2025
Sat Nov 29 06:57:05 EST 2025
Tue Nov 18 22:23:40 EST 2025
Sat Jul 13 15:32:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2457-13c47a4ec74cf4377852274f8d5ce29a4999f99169a609fdfe77c9f694d4997e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC05-76RL01830
USDOE Office of Science (SC), Basic Energy Sciences (BES)
PNNL-SA--197007
ORCID 0000-0001-8907-8004
0000000189078004
OpenAccessLink https://www.osti.gov/servlets/purl/2476327
PQID 3071283363
PQPubID 23479
ParticipantIDs osti_scitechconnect_2476327
proquest_miscellaneous_3071283363
crossref_citationtrail_10_1016_j_jmr_2024_107707
crossref_primary_10_1016_j_jmr_2024_107707
elsevier_sciencedirect_doi_10_1016_j_jmr_2024_107707
PublicationCentury 2000
PublicationDate 20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 20240701
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of magnetic resonance (1997)
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Graham, Wei, Walter, Nienhuis, Chun, Schenter, Rosso, Pearce, Clark (b0060) 2023; 59
Hayamizu (b0015) 2012; 57
Feinauer, Majer (b0030) 2001
Yu, Bien, Pletka, Iwahara (b0010) 2022; 94
Sahm, Schwenk (b0090) 1974; 29
Nienhuis, Graham, D'Annunzio, Kowalska, LaVerne, Orlando, Reynolds, Camaioni, Rosso, Pearce, Walter (b0100) 2023
Stejskal, Tanner (b0040) 1965; 42
Han, Bazak, Chen, Graham, Washton, Hu, Murugesan, Mueller (b0045) 2021; 33
Andersen, Rajput, Han, Pan, Govind, Persson, Mueller, Murugesan (b0070) 2019; 31
Rezaei-Ghaleh (b0135) 2022
Smith (b0120) 1977; 54
Min, Xiao, Fang, Wang, Zhao, Liu, Abdelkader, Xi, Kumar, Huang (b0110) 2021; 14
Price (b0050) 1998; 10
Raiford, Fisk, Becker (b0140) 1979; 51
Gyabeng, Martín, Pal, Deschamps, Forsyth, O'Dell (b0020) 2019
Yu, Juran, Liu, Han, Wang, Mueller, Ma, Xu, Li, Curtiss, Cheng (b0075) 2022; 5
Hayamizu, Chiba, Haishi (b0125) 2021; 11
Harris, Becker, de Menezes, Goodfellow, Granger (b0025) 2002; 40
Gaune (b0080) 1982; 27
Wang, Graham, Mamontov, Page, Stack, Pearce (b0095) 2019; 10
Graham, Han, Dembowski, Krzysko, Zhang, Hu, Clark, Clark, Schenter, Pearce, Rosso (b0105) 2018; 122
Fieno, Kim, Rehwald, Judd (b0035) 1999; 84
Price (b0055) 1997; 9
Graham, Chun, Schenter, Zhang, Clark, Pearce, Rosso (b0065) 2022; 60
Sinclair, Oakes, Warden, Paten, Jones (b0130) 2023
Mortensen, Aguilar, Crebelli, Di Domenico, Dusemund, Frutos, Galtier, Gott, Gundert-Remy, Lambré, Leblanc, Lindtner, Moldeus, Mosesso, Oskarsson, Parent-Massin, Stankovic, Waalkens-Berendsen, Woutersen, Wright, van den Brandt, Fortes, Merino, Toldrà, Arcella, Christodoulidou, Abrahantes, Barrucci, Garcia, Pizzo, Battacchi, Younes, Additives (b0085) 2017
Hayamizu, Terada, Kataoka, Akimoto, Haishi (b0005) 2019; 21
Zhou, Bai, Ji, Yang, Wang, Xu (b0115) 2021
Zhou (10.1016/j.jmr.2024.107707_b0115) 2021
Sahm (10.1016/j.jmr.2024.107707_b0090) 1974; 29
Andersen (10.1016/j.jmr.2024.107707_b0070) 2019; 31
Raiford (10.1016/j.jmr.2024.107707_b0140) 1979; 51
Feinauer (10.1016/j.jmr.2024.107707_b0030) 2001
Hayamizu (10.1016/j.jmr.2024.107707_b0005) 2019; 21
Rezaei-Ghaleh (10.1016/j.jmr.2024.107707_b0135) 2022
Yu (10.1016/j.jmr.2024.107707_b0010) 2022; 94
Price (10.1016/j.jmr.2024.107707_b0055) 1997; 9
Price (10.1016/j.jmr.2024.107707_b0050) 1998; 10
Fieno (10.1016/j.jmr.2024.107707_b0035) 1999; 84
Hayamizu (10.1016/j.jmr.2024.107707_b0125) 2021; 11
Min (10.1016/j.jmr.2024.107707_b0110) 2021; 14
Smith (10.1016/j.jmr.2024.107707_b0120) 1977; 54
Stejskal (10.1016/j.jmr.2024.107707_b0040) 1965; 42
Wang (10.1016/j.jmr.2024.107707_b0095) 2019; 10
Gyabeng (10.1016/j.jmr.2024.107707_b0020) 2019
Gaune (10.1016/j.jmr.2024.107707_b0080) 1982; 27
Graham (10.1016/j.jmr.2024.107707_b0060) 2023; 59
Han (10.1016/j.jmr.2024.107707_b0045) 2021; 33
Yu (10.1016/j.jmr.2024.107707_b0075) 2022; 5
Sinclair (10.1016/j.jmr.2024.107707_b0130) 2023
Graham (10.1016/j.jmr.2024.107707_b0065) 2022; 60
Graham (10.1016/j.jmr.2024.107707_b0105) 2018; 122
Mortensen (10.1016/j.jmr.2024.107707_b0085) 2017
Harris (10.1016/j.jmr.2024.107707_b0025) 2002; 40
Hayamizu (10.1016/j.jmr.2024.107707_b0015) 2012; 57
Nienhuis (10.1016/j.jmr.2024.107707_b0100) 2023
References_xml – volume: 9
  start-page: 299
  year: 1997
  end-page: 336
  ident: b0055
  publication-title: Concept Magnet. Res.
– start-page: 15
  year: 2017
  ident: b0085
  publication-title: EFSA J.
– volume: 33
  start-page: 8562
  year: 2021
  end-page: 8590
  ident: b0045
  publication-title: Chem. Mater.
– start-page: 158
  year: 2023
  ident: b0100
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 20252
  year: 2021
  end-page: 20257
  ident: b0125
  publication-title: RSC Adv.
– volume: 84
  start-page: 913
  year: 1999
  end-page: 920
  ident: b0035
  publication-title: Circ. Res.
– volume: 27
  start-page: 151
  year: 1982
  end-page: 153
  ident: b0080
  publication-title: J. Chem. Eng. Data
– volume: 21
  start-page: 23589
  year: 2019
  end-page: 23597
  ident: b0005
  publication-title: PCCP
– start-page: 64
  year: 2001
  ident: b0030
  publication-title: Phys. Rev. B
– volume: 54
  start-page: 540
  year: 1977
  end-page: 542
  ident: b0120
  publication-title: J. Chem. Educ.
– volume: 51
  start-page: 2050
  year: 1979
  end-page: 2051
  ident: b0140
  publication-title: Anal. Chem.
– volume: 10
  start-page: 197
  year: 1998
  end-page: 237
  ident: b0050
  publication-title: Concept Magnet. Res.
– volume: 94
  start-page: 2444
  year: 2022
  end-page: 2452
  ident: b0010
  publication-title: Anal. Chem.
– start-page: 33
  year: 2021
  ident: b0115
  publication-title: Adv. Mater.
– volume: 57
  start-page: 2012
  year: 2012
  end-page: 2017
  ident: b0015
  publication-title: J. Chem. Eng. Data
– volume: 5
  start-page: 295
  year: 2022
  end-page: 304
  ident: b0075
  publication-title: Energy Environ Mater
– volume: 31
  start-page: 2308
  year: 2019
  end-page: 2319
  ident: b0070
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1754
  year: 1974
  end-page: 1762
  ident: b0090
  publication-title: Zeitschrift Für Naturforschung A
– volume: 60
  start-page: 226
  year: 2022
  end-page: 238
  ident: b0065
  publication-title: Magn. Reson. Chem.
– volume: 40
  start-page: 622
  year: 2002
  ident: b0025
  publication-title: Magn. Reson. Chem.
– volume: 10
  start-page: 3318
  year: 2019
  end-page: 3325
  ident: b0095
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 2186
  year: 2021
  end-page: 2243
  ident: b0110
  publication-title: Energ. Environ. Sci.
– start-page: 11
  year: 2022
  ident: b0135
  publication-title: Chemistryopen
– volume: 42
  start-page: 288
  year: 1965
  ident: b0040
  publication-title: J. Chem. Phys.
– start-page: 7
  year: 2019
  ident: b0020
  publication-title: Front. Chem.
– volume: 122
  start-page: 10907
  year: 2018
  end-page: 10912
  ident: b0105
  publication-title: J. Phys. Chem. B
– volume: 59
  start-page: 14407
  year: 2023
  end-page: 14410
  ident: b0060
  publication-title: Chem. Commun.
– start-page: 19
  year: 2023
  ident: b0130
  publication-title: Metabolomics
– volume: 21
  start-page: 23589
  year: 2019
  ident: 10.1016/j.jmr.2024.107707_b0005
  publication-title: PCCP
  doi: 10.1039/C9CP04714J
– start-page: 64
  year: 2001
  ident: 10.1016/j.jmr.2024.107707_b0030
  publication-title: Phys. Rev. B
– volume: 31
  start-page: 2308
  year: 2019
  ident: 10.1016/j.jmr.2024.107707_b0070
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03944
– start-page: 11
  year: 2022
  ident: 10.1016/j.jmr.2024.107707_b0135
  publication-title: Chemistryopen
– volume: 42
  start-page: 288
  year: 1965
  ident: 10.1016/j.jmr.2024.107707_b0040
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1695690
– volume: 57
  start-page: 2012
  year: 2012
  ident: 10.1016/j.jmr.2024.107707_b0015
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je3003089
– volume: 59
  start-page: 14407
  year: 2023
  ident: 10.1016/j.jmr.2024.107707_b0060
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC04168A
– volume: 54
  start-page: 540
  year: 1977
  ident: 10.1016/j.jmr.2024.107707_b0120
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed054p540
– volume: 29
  start-page: 1754
  year: 1974
  ident: 10.1016/j.jmr.2024.107707_b0090
  publication-title: Zeitschrift Für Naturforschung A
  doi: 10.1515/zna-1974-1208
– volume: 51
  start-page: 2050
  year: 1979
  ident: 10.1016/j.jmr.2024.107707_b0140
  publication-title: Anal. Chem.
  doi: 10.1021/ac50048a040
– volume: 60
  start-page: 226
  year: 2022
  ident: 10.1016/j.jmr.2024.107707_b0065
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.5218
– volume: 27
  start-page: 151
  year: 1982
  ident: 10.1016/j.jmr.2024.107707_b0080
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00028a014
– volume: 40
  start-page: 622
  year: 2002
  ident: 10.1016/j.jmr.2024.107707_b0025
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.1079
– start-page: 15
  year: 2017
  ident: 10.1016/j.jmr.2024.107707_b0085
  publication-title: EFSA J.
– start-page: 7
  year: 2019
  ident: 10.1016/j.jmr.2024.107707_b0020
  publication-title: Front. Chem.
– start-page: 33
  year: 2021
  ident: 10.1016/j.jmr.2024.107707_b0115
  publication-title: Adv. Mater.
– start-page: 19
  year: 2023
  ident: 10.1016/j.jmr.2024.107707_b0130
  publication-title: Metabolomics
– volume: 10
  start-page: 3318
  year: 2019
  ident: 10.1016/j.jmr.2024.107707_b0095
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b01416
– volume: 84
  start-page: 913
  year: 1999
  ident: 10.1016/j.jmr.2024.107707_b0035
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.84.8.913
– volume: 10
  start-page: 197
  year: 1998
  ident: 10.1016/j.jmr.2024.107707_b0050
  publication-title: Concept Magnet. Res.
  doi: 10.1002/(SICI)1099-0534(1998)10:4<197::AID-CMR1>3.0.CO;2-S
– volume: 5
  start-page: 295
  year: 2022
  ident: 10.1016/j.jmr.2024.107707_b0075
  publication-title: Energy Environ Mater
  doi: 10.1002/eem2.12174
– volume: 11
  start-page: 20252
  year: 2021
  ident: 10.1016/j.jmr.2024.107707_b0125
  publication-title: RSC Adv.
  doi: 10.1039/D1RA02301B
– volume: 33
  start-page: 8562
  year: 2021
  ident: 10.1016/j.jmr.2024.107707_b0045
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c02891
– volume: 9
  start-page: 299
  year: 1997
  ident: 10.1016/j.jmr.2024.107707_b0055
  publication-title: Concept Magnet. Res.
  doi: 10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U
– volume: 94
  start-page: 2444
  year: 2022
  ident: 10.1016/j.jmr.2024.107707_b0010
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c04197
– volume: 122
  start-page: 10907
  year: 2018
  ident: 10.1016/j.jmr.2024.107707_b0105
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b10145
– start-page: 158
  year: 2023
  ident: 10.1016/j.jmr.2024.107707_b0100
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 2186
  year: 2021
  ident: 10.1016/j.jmr.2024.107707_b0110
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D0EE02917C
SSID ssj0011570
Score 2.4227028
Snippet [Display omitted] •Established feasibility of 39K PFGSTE NMR in concentrated potassium nitrite solutions despite unfavorable NMR properties•Identified viable...
While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107707
SubjectTerms ATOMIC AND MOLECULAR PHYSICS
Title Multinuclear PFGSTE NMR description of 39K, 23Na, 7Li, and 1H specific activation energies governing diffusion in alkali nitrite solutions
URI https://dx.doi.org/10.1016/j.jmr.2024.107707
https://www.proquest.com/docview/3071283363
https://www.osti.gov/servlets/purl/2476327
Volume 364
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DgQvCAYTYzAZiSfSVE3ixvFjVbUrX9XUFalvUebYo6VLp3adJn4CP41fxb1xnHSMTYDES1XZddzmnl4f31yfS8gbpPw6YtpNQy90mRSBG-k0clVb6YS1JEuSVl5sgg-H0WQijmq1H_YszOWcZ1l0dSXO_6upoQ2MjUdn_8Lc5UWhAd6D0eEVzA6vf2T4_EhthjLFydI56h8ej3vO8NPISVXlIYAhBuID3l4_GOb0kX-c2kROb-Dg-UvMIcqlNkzQ1kF9atSUcE7z8rwYYsDqKutVkS2ZzL8Cp3fARSyBxjrlj7yF_p4lp5kyAtK4G0D_gppRQmwGJ6pz3ONcRWrU_M0C0Vl9Qc9W9fVhvS-CuCZx3Dks-7p5kSJ3tJ5-q_oXTqe5Gf7wWZkqW8Tk7Lmca2mjmG3q8sjU020q2xa6QDDDTd8fGAn1G-uICWnMmrMz1Iz1GbRwbi93TZ77GOfCqTAZF8nXFtn2eVuAh93uvOtN3pfPtLw2N9oYxXezz9jzbMNfJrqNJdUX4Phv0IacC40fk0eFFWnHgO8Jqalshzzo2tqBO-R-nlgsV0_J9004UgNHCnCkG3CkC00Bjg2KYGxQgGKDAhCpN6AWiLQCIrVApCUQaQlEOs2oASItgEhLID4jn_u9cXfgFvU_XOmzNne9QDKeMCU5k5oFnEewWeBMR2lbKl8kuFnXuL8RSdgSOtWKcyl0KFgKXVwFu6SeLTL1nNCT1kkEfijSoQY-C91A0zE44ulABVzJPdKy9zuWhTg-1miZxzYLchaDiWI0UWxMtEfelkPOjTLMXR9m1ohxQW0NZY0BcXcN20eD4xCUdJaY-wZjfAaswIfe1xYHMdgXn_QlmVqsVzEs3MA7gyAMXvzbxPvkYfVne0nqF8u1ekXuycuL6Wp5QLb4JDoo8P0TCtjadA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multinuclear+PFGSTE+NMR+description+of+39K%2C+23Na%2C+7Li%2C+and+1H+specific+activation+energies+governing+diffusion+in+alkali+nitrite+solutions&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Graham%2C+Trent+R.&rft.au=Kennedy%2C+Ashley+R.&rft.au=Felsted%2C+Robert+G.&rft.au=Colina-Ruiz%2C+Roberto+A.&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=1090-7807&rft.eissn=1096-0856&rft.volume=364&rft_id=info:doi/10.1016%2Fj.jmr.2024.107707&rft.externalDocID=S1090780724000910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon