A Class of Optimal Structures for Node Computations in Message Passing Algorithms

Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages <inline-formula> <tex-math notation="LaTeX">\mathbf {x} = (x_{1}, x_{2}, \ldots, x_{n}) </tex-math></inline-formula> and <inline-formula>...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 68; no. 1; pp. 93 - 104
Main Authors: He, Xuan, Cai, Kui, Zhou, Liang
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages <inline-formula> <tex-math notation="LaTeX">\mathbf {x} = (x_{1}, x_{2}, \ldots, x_{n}) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\mathbf {y} = (y_{1}, y_{2}, \ldots, y_{n}) </tex-math></inline-formula>, respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula>, where each <inline-formula> <tex-math notation="LaTeX">y_{j}, j = 1, 2, \ldots, n </tex-math></inline-formula> is computed via a binary tree with leaves <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> excluding <inline-formula> <tex-math notation="LaTeX">x_{j} </tex-math></inline-formula>. We make three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is <inline-formula> <tex-math notation="LaTeX">3n - 6 </tex-math></inline-formula>, and if a structure has such complexity, its minimum latency is <inline-formula> <tex-math notation="LaTeX">\delta + \lceil \log (n-2^{\delta }) \rceil </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">\delta = \lfloor \log (n/2) \rfloor </tex-math></inline-formula>, where the logarithm always takes base two. Second, we prove that the minimum latency of such a structure is <inline-formula> <tex-math notation="LaTeX">\lceil \log (n-1) \rceil </tex-math></inline-formula>, and if a structure has such latency, its minimum complexity is <inline-formula> <tex-math notation="LaTeX">n \log (n-1) </tex-math></inline-formula> when <inline-formula> <tex-math notation="LaTeX">n-1 </tex-math></inline-formula> is a power of two. Third, given <inline-formula> <tex-math notation="LaTeX">(n, \tau) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">\tau \geq \lceil \log (n-1) \rceil </tex-math></inline-formula>, we propose a construction for a structure which we conjecture to have the minimum complexity among structures with latencies at most <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula>. Our construction method runs in <inline-formula> <tex-math notation="LaTeX">O(n^{3} \log ^{2}(n)) </tex-math></inline-formula> time, and the obtained structure has complexity at most (generally much smaller than) <inline-formula> <tex-math notation="LaTeX">n \lceil \log (n) \rceil - 2 </tex-math></inline-formula>.
AbstractList Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages [Formula Omitted] and [Formula Omitted], respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing [Formula Omitted] from [Formula Omitted], where each [Formula Omitted] is computed via a binary tree with leaves [Formula Omitted] excluding [Formula Omitted]. We make three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is [Formula Omitted], and if a structure has such complexity, its minimum latency is [Formula Omitted] with [Formula Omitted], where the logarithm always takes base two. Second, we prove that the minimum latency of such a structure is [Formula Omitted], and if a structure has such latency, its minimum complexity is [Formula Omitted] when [Formula Omitted] is a power of two. Third, given [Formula Omitted] with [Formula Omitted], we propose a construction for a structure which we conjecture to have the minimum complexity among structures with latencies at most [Formula Omitted]. Our construction method runs in [Formula Omitted] time, and the obtained structure has complexity at most (generally much smaller than) [Formula Omitted].
Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages <inline-formula> <tex-math notation="LaTeX">\mathbf {x} = (x_{1}, x_{2}, \ldots, x_{n}) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\mathbf {y} = (y_{1}, y_{2}, \ldots, y_{n}) </tex-math></inline-formula>, respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula>, where each <inline-formula> <tex-math notation="LaTeX">y_{j}, j = 1, 2, \ldots, n </tex-math></inline-formula> is computed via a binary tree with leaves <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> excluding <inline-formula> <tex-math notation="LaTeX">x_{j} </tex-math></inline-formula>. We make three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is <inline-formula> <tex-math notation="LaTeX">3n - 6 </tex-math></inline-formula>, and if a structure has such complexity, its minimum latency is <inline-formula> <tex-math notation="LaTeX">\delta + \lceil \log (n-2^{\delta }) \rceil </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">\delta = \lfloor \log (n/2) \rfloor </tex-math></inline-formula>, where the logarithm always takes base two. Second, we prove that the minimum latency of such a structure is <inline-formula> <tex-math notation="LaTeX">\lceil \log (n-1) \rceil </tex-math></inline-formula>, and if a structure has such latency, its minimum complexity is <inline-formula> <tex-math notation="LaTeX">n \log (n-1) </tex-math></inline-formula> when <inline-formula> <tex-math notation="LaTeX">n-1 </tex-math></inline-formula> is a power of two. Third, given <inline-formula> <tex-math notation="LaTeX">(n, \tau) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">\tau \geq \lceil \log (n-1) \rceil </tex-math></inline-formula>, we propose a construction for a structure which we conjecture to have the minimum complexity among structures with latencies at most <inline-formula> <tex-math notation="LaTeX">\tau </tex-math></inline-formula>. Our construction method runs in <inline-formula> <tex-math notation="LaTeX">O(n^{3} \log ^{2}(n)) </tex-math></inline-formula> time, and the obtained structure has complexity at most (generally much smaller than) <inline-formula> <tex-math notation="LaTeX">n \lceil \log (n) \rceil - 2 </tex-math></inline-formula>.
Author He, Xuan
Zhou, Liang
Cai, Kui
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0002-8934-1981
  surname: He
  fullname: He, Xuan
  email: xhe@swjtu.edu.cn
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
– sequence: 2
  givenname: Kui
  orcidid: 0000-0003-2059-0071
  surname: Cai
  fullname: Cai, Kui
  email: cai_kui@sutd.edu.sg
  organization: Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-9453-3734
  surname: Zhou
  fullname: Zhou, Liang
  email: lzhou@uestc.edu.cn
  organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNo9kE1LwzAYgIMouE3vgpeA5858pzmO4sdgOsV5DrFNZkfX1CQ9-O_N2PAUXnie9yXPFJz3vrcA3GA0xxip-81yMyeI4DnFWClOzsAEcy4LJTg7BxOEcFkoxspLMI1xl0fGMZmA9wWsOhMj9A6uh9TuTQc_UhjrNAYbofMBvvrGwsrvhzGZ1Po-wraHLzZGs7XwLbttv4WLbutDm7738QpcONNFe316Z-Dz8WFTPRer9dOyWqyKmjCWipqXTSMZ5UIQ-cXLWtSS8bqmRijsmFTKUSYwkdTIshGOIGFKlnmLuTPW0Rm4O-4dgv8ZbUx658fQ55OaZI8JiRHKFDpSdfAxBuv0EPInw6_GSB_C6RxOH8LpU7is3B6V1lr7jysuEZWU_gGJAGoE
CODEN IETTAW
Cites_doi 10.1109/SiPS.2015.7345024
10.1109/LCOMM.2019.2937112
10.1109/ACSSC.2015.7421419
10.1109/18.910577
10.1109/IEEESTD.2003.94282
10.1109/ICC.2016.7510906
10.1109/TIT.1962.1057683
10.1109/TCOMM.2005.852852
10.1109/GLOCOM.2008.ECP.214
10.1109/TCSII.2014.2362663
10.1109/ACCESS.2018.2797694
10.1109/TCSI.2008.924892
10.1109/ISIT.2015.7282490
10.1109/ICSPCS.2018.8631719
10.1587/transcom.2018TTI0001
10.1109/GLOBECOM38437.2019.9013335
10.1109/GLOCOM.2001.965575
10.1109/JSAC.2016.2603708
10.1109/TCOMM.2019.2944159
10.1109/TVLSI.2017.2766925
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2021.3119952
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 104
ExternalDocumentID 10_1109_TIT_2021_3119952
9570373
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62101462
  funderid: 10.13039/501100001809
– fundername: Singapore Ministry of Education Academic Research Fund Tier 2
  grantid: MOE2019-T2-2-123
  funderid: 10.13039/501100001459
– fundername: RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic
  grantid: A18A6b0057
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c244t-c58dd74356627b58c6c745cc3a691f4799f3461273a78d6f206a84435e15faef3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732981200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Jun 29 15:37:38 EDT 2025
Sat Nov 29 03:31:46 EST 2025
Wed Aug 27 05:07:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-c58dd74356627b58c6c745cc3a691f4799f3461273a78d6f206a84435e15faef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2059-0071
0000-0002-8934-1981
0000-0002-9453-3734
PQID 2612467100
PQPubID 36024
PageCount 12
ParticipantIDs proquest_journals_2612467100
ieee_primary_9570373
crossref_primary_10_1109_TIT_2021_3119952
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
Cormen (ref22) 2009
ref17
ref16
He (ref5) 2019
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref17
  doi: 10.1109/SiPS.2015.7345024
– volume-title: Introduction to Algorithms
  year: 2009
  ident: ref22
– ident: ref6
  doi: 10.1109/LCOMM.2019.2937112
– ident: ref15
  doi: 10.1109/ACSSC.2015.7421419
– ident: ref2
  doi: 10.1109/18.910577
– ident: ref8
  doi: 10.1109/IEEESTD.2003.94282
– ident: ref16
  doi: 10.1109/ICC.2016.7510906
– ident: ref1
  doi: 10.1109/TIT.1962.1057683
– ident: ref3
  doi: 10.1109/TCOMM.2005.852852
– ident: ref11
  doi: 10.1109/GLOCOM.2008.ECP.214
– ident: ref10
  doi: 10.1109/TCSII.2014.2362663
– ident: ref19
  doi: 10.1109/ACCESS.2018.2797694
– ident: ref9
  doi: 10.1109/TCSI.2008.924892
– ident: ref12
  doi: 10.1109/ISIT.2015.7282490
– ident: ref20
  doi: 10.1109/ICSPCS.2018.8631719
– ident: ref21
  doi: 10.1587/transcom.2018TTI0001
– ident: ref4
  doi: 10.1109/GLOBECOM38437.2019.9013335
– ident: ref7
  doi: 10.1109/GLOCOM.2001.965575
– year: 2019
  ident: ref5
  article-title: Mutual information-maximizing quantized belief propagation decoding of regular LDPC codes
  publication-title: arXiv:1904.06666
– ident: ref13
  doi: 10.1109/JSAC.2016.2603708
– ident: ref14
  doi: 10.1109/TCOMM.2019.2944159
– ident: ref18
  doi: 10.1109/TVLSI.2017.2766925
SSID ssj0014512
Score 2.3845465
Snippet Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages <inline-formula> <tex-math...
Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages [Formula Omitted] and [Formula...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 93
SubjectTerms Algorithms
Binary structure
Binary trees
Complexity
Complexity theory
Decoding
Directed graphs
Electronic mail
latency
low-density parity-check (LDPC) code
Message passing
message passing algorithm
Nodes
Parity check codes
Title A Class of Optimal Structures for Node Computations in Message Passing Algorithms
URI https://ieeexplore.ieee.org/document/9570373
https://www.proquest.com/docview/2612467100
Volume 68
WOSCitedRecordID wos000732981200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHq1axWiUHL4Jr95FNNsciioLWihW8LZuXFrQrtvX3O8lui6IXbzkkwzKz80zmG4BjqTSXyvKAKVQ3SqUIhE5lILm2MS1kFiov6Rs-GGRPT2LYgNNlL4wxxj8-M2du6e_ydanmrlTWEw4uiicrsMI5q3q1ljcGNI0qZPAIFRhzjsWVZCh6o-sRJoJxhPmpa0iOf7ggP1PllyH23uWy9b_v2oSNOook_UrsW9Awk21oLSY0kFpht2H9G9xgG-77xM_AJKUld2gq3pDEg8ePnWPSTTB8JYNSG1LRqUp5ZDwht25MyrMhQzyLhEj_9bn8GM9e3qY78Hh5MTq_CuqRCoFCPz4LVJppjUFD6nDfZZoppjhNlUoKJiJLuRA2oRj08KTgmWY2DlmRUdxvotQWxia70JyUE7MHJEm1slksFUMPJ4UthKGcSlNYGzNcduBkweX8vULOyH3GEYocJZI7ieS1RDrQdlxd7qsZ2oHuQix5rVrT3GGeoXWPwnD_71MHsBa7HgVfJ-lCE_loDmFVfc7G048j_9d8AXCPwD0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurB-sT6zMGL4Np9ZDebYxHFYlsVK3hbNq9asF2x1d_vJLstil685ZAMy8zOM5lvAE6FVExIw7xEorpRKrjHVSw8wZQJaS5SXzpJd1ivlz4_8_sFOJ_3wmit3eMzfWGX7i5fFfLDlsqa3MJFsWgRluzkrKpba35nQOOgxAYPUIUx65hdSvq82W_3MRUMA8xQbUty-MMJuakqv0yx8y_X9f992QasV3EkaZWC34QFPd6C-mxGA6lUdgvWvgEObsNDi7gpmKQw5A6NxQhJPDoE2Q9MuwkGsKRXKE1KOmUxjwzHpGsHpQw0ucezSIi0XgfF-3D6MprswNP1Vf_yxquGKngSPfnUk3GqFIYNsUV-F3EqE8loLGWUJzwwlHFuIophD4tylqrEhH6SpxT36yA2uTbRLtTGxVjvAYliJU0aCpmgjxPc5FxTRoXOjQkTXDbgbMbl7K3EzshczuHzDCWSWYlklUQasG25Ot9XMbQBhzOxZJVyTTKLeob2PfD9_b9PncDKTb_byTrt3u0BrIa2Y8FVTQ6hhjzVR7AsP6fDyfux-4O-AKIww4Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Class+of+Optimal+Structures+for+Node+Computations+in+Message+Passing+Algorithms&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=He%2C+Xuan&rft.au=Cai%2C+Kui&rft.au=Zhou%2C+Liang&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=1&rft.spage=93&rft_id=info:doi/10.1109%2FTIT.2021.3119952&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon