Accelerated first-order optimization under nonlinear constraints

We exploit analogies between first-order algorithms for constrained optimization and non-smooth dynamical systems to design a new class of accelerated first-order algorithms for constrained optimization. Unlike Frank–Wolfe or projected gradients, these algorithms avoid optimization over the entire f...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming
Main Authors: Muehlebach, Michael, Jordan, Michael I.
Format: Journal Article
Language:English
Published: 21.04.2025
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We exploit analogies between first-order algorithms for constrained optimization and non-smooth dynamical systems to design a new class of accelerated first-order algorithms for constrained optimization. Unlike Frank–Wolfe or projected gradients, these algorithms avoid optimization over the entire feasible set at each iteration. We prove convergence to stationary points even in a nonconvex setting and we derive accelerated rates for the convex setting both in continuous time, as well as in discrete time. An important property of these algorithms is that constraints are expressed in terms of velocities instead of positions, which naturally leads to sparse, local and convex approximations of the feasible set (even if the feasible set is nonconvex). Thus, the complexity tends to grow mildly in the number of decision variables and in the number of constraints, which makes the algorithms suitable for machine learning applications. We apply our algorithms to a compressed sensing and a sparse regression problem, showing that we can treat nonconvex $$\ell ^p$$ ℓ p constraints ( $$p<1$$ p < 1 ) efficiently, while recovering state-of-the-art performance for $$p=1$$ p = 1 .
AbstractList We exploit analogies between first-order algorithms for constrained optimization and non-smooth dynamical systems to design a new class of accelerated first-order algorithms for constrained optimization. Unlike Frank–Wolfe or projected gradients, these algorithms avoid optimization over the entire feasible set at each iteration. We prove convergence to stationary points even in a nonconvex setting and we derive accelerated rates for the convex setting both in continuous time, as well as in discrete time. An important property of these algorithms is that constraints are expressed in terms of velocities instead of positions, which naturally leads to sparse, local and convex approximations of the feasible set (even if the feasible set is nonconvex). Thus, the complexity tends to grow mildly in the number of decision variables and in the number of constraints, which makes the algorithms suitable for machine learning applications. We apply our algorithms to a compressed sensing and a sparse regression problem, showing that we can treat nonconvex $$\ell ^p$$ ℓ p constraints ( $$p<1$$ p < 1 ) efficiently, while recovering state-of-the-art performance for $$p=1$$ p = 1 .
Author Muehlebach, Michael
Jordan, Michael I.
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-7764-3069
  surname: Muehlebach
  fullname: Muehlebach, Michael
– sequence: 2
  givenname: Michael I.
  surname: Jordan
  fullname: Jordan, Michael I.
BookMark eNotkMtOwzAQRS1UJNLCD7DKDxhm_EidHVXFS6rEBtaW40wko9SpbLOAryehLOaOdK80j7NmqzhFYuwW4Q4BtvcZAWHLQei5hFAcL1iFSjZcNapZsQqWSDcIV2yd8ycAoDSmYg8772mk5Ar19RBSLnxKPaV6OpVwDD-uhCnWX3Gx5p1jiORS7aeYS3IhlnzNLgc3Zrr57xv28fT4vn_hh7fn1_3uwL1QqszaS9mScUZT69HT0DuHhlyHmtALIg3QdEZvdTdfSbqR0AkltUBnuraXGybOc32ack402FMKR5e-LYJdGNgzAzs_av8YWJS_xZZSSA
Cites_doi 10.1007/978-1-4939-1037-3
10.1007/BF00933293
10.1137/080716542
10.1007/978-3-540-76975-0
10.1007/s11081-016-9328-z
10.1080/02331930600711448
10.1007/978-3-7091-2624-0_1
10.1007/978-3-642-01100-9
10.1007/s10898-016-0493-6
10.1137/21M1410063
10.1007/978-3-540-44479-4
10.1145/1824777.1824783
10.1051/cocv/2010024
10.1016/S0167-6377(02)00231-6
10.1007/s10107-019-01382-3
10.1007/s10107-016-0992-8
10.1142/S0218127408021099
10.1007/978-1-4419-8853-9
10.1109/9.802938
10.1007/s11228-020-00559-9
10.1016/0041-5553(64)90137-5
10.1093/imanum/23.4.539
10.1007/s10107-018-1311-3
10.1137/20M1322716
10.1088/1742-5468/abcaee
10.1023/A:1011253113155
10.1137/16M1133889
10.1007/BFb0120959
10.1515/9781400873173
10.1073/pnas.1614734113
10.1007/s10957-021-01859-2
10.1017/CBO9780511804458.003
10.1007/978-0-387-84858-7
10.1561/2200000024
10.1103/PhysRevLett.133.057401
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1007/s10107-025-02224-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
ExternalDocumentID 10_1007_s10107_025_02224_1
GroupedDBID --Z
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BGNMA
BSONS
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBR
EBS
EBU
EIOEI
EMI
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
QWB
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZL0
ZMTXR
~02
~EX
ID FETCH-LOGICAL-c244t-c2d339e8a85e9c1cefdaa18eab15e1c2ee5006b8575b610e5630b243521a8b9d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471774400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 08:01:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-c2d339e8a85e9c1cefdaa18eab15e1c2ee5006b8575b610e5630b243521a8b9d3
ORCID 0000-0002-7764-3069
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10107-025-02224-1.pdf
ParticipantIDs crossref_primary_10_1007_s10107_025_02224_1
PublicationCentury 2000
PublicationDate 2025-04-21
PublicationDateYYYYMMDD 2025-04-21
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-21
  day: 21
PublicationDecade 2020
PublicationTitle Mathematical programming
PublicationYear 2025
References T Guanchun (2224_CR15) 2023; 211
Y Nesterov (2224_CR54) 2004
DS Gonçalves (2224_CR36) 2017; 69
R Fletcher (2224_CR42) 1982; 17
2224_CR14
S Bubeck (2224_CR31) 2012; 5
A Beck (2224_CR30) 2003; 31
M Jaggi (2224_CR23) 2013; 28
RI Leine (2224_CR47) 2008
M Muehlebach (2224_CR10) 2021; 22
2224_CR16
D Garber (2224_CR27) 2015; 37
W Su (2224_CR2) 2016; 17
H Attouch (2224_CR32) 2021; 6
AS Nemirovski (2224_CR29) 1983
2224_CR7
2224_CR43
W Krichene (2224_CR5) 2015; 28
M Muehlebach (2224_CR8) 2019; 97
F Alvarez (2224_CR12) 2001; 9
KL Clarkson (2224_CR24) 2010; 6
AR Teel (2224_CR50) 1999; 44
M Muehlebach (2224_CR1) 2022; 23
C Studer (2224_CR18) 2009
J Diakonikolas (2224_CR4) 2021; 31
M-L Vladarean (2224_CR45) 2023; 195
H Attouch (2224_CR11) 2018; 168
G França (2224_CR6) 2020; 2020
AL Dontchev (2224_CR53) 2014
C Glocker (2224_CR17) 2001
C Wang (2224_CR19) 2006; 55
T Hastie (2224_CR55) 2009
N Doikov (2224_CR44) 2022; 32
CW Combettes (2224_CR28) 2020; 119
M Muehlebach (2224_CR9) 2020; 119
M Zhang (2224_CR26) 2020; 108
H Attouch (2224_CR13) 2011; 17
RI Leine (2224_CR49) 2008; 18
A Beck (2224_CR56) 2009; 2
A Wibisono (2224_CR3) 2016; 113
EG Birgin (2224_CR20) 2003; 23
2224_CR37
2224_CR38
J Bolte (2224_CR39) 2018; 28
P Kolev (2224_CR34) 2023; 36
BT Polyak (2224_CR52) 1987
V Bloom (2224_CR22) 2016; 17
DP Bertsekas (2224_CR40) 1977; 23
D Drusvyatskiy (2224_CR41) 2019; 178
2224_CR25
LD Piazza (2224_CR48) 2021; 29
S Schechtman (2224_CR35) 2023; 195
2224_CR21
H Attouch (2224_CR33) 2022; 193
RT Rockafellar (2224_CR51) 1970
BT Polyak (2224_CR46) 1964; 4
References_xml – volume-title: Implicit Functions and Solution Mappings
  year: 2014
  ident: 2224_CR53
  doi: 10.1007/978-1-4939-1037-3
– volume: 28
  start-page: 427
  issue: 1
  year: 2013
  ident: 2224_CR23
  publication-title: Proc. Mach. Learn. Res.
– volume: 23
  start-page: 487
  issue: 4
  year: 1977
  ident: 2224_CR40
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00933293
– volume: 17
  start-page: 1
  issue: 153
  year: 2016
  ident: 2224_CR2
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 1
  issue: 256
  year: 2022
  ident: 2224_CR1
  publication-title: J. Mach. Learn. Res.
– ident: 2224_CR14
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 2224_CR56
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 28
  start-page: 2845
  year: 2015
  ident: 2224_CR5
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Stability and Convergence of Mechanical Systems with Unilateral Constraints
  year: 2008
  ident: 2224_CR47
  doi: 10.1007/978-3-540-76975-0
– volume: 17
  start-page: 651
  issue: 4
  year: 2016
  ident: 2224_CR22
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-016-9328-z
– volume: 195
  start-page: 3669
  year: 2023
  ident: 2224_CR45
  publication-title: Proc. Mach. Learn. Res.
– volume: 37
  start-page: 541
  year: 2015
  ident: 2224_CR27
  publication-title: Proc. Mach. Learn. Res.
– volume-title: Problem Complexity and Method Efficiency in Optimization
  year: 1983
  ident: 2224_CR29
– volume: 55
  start-page: 301
  issue: 3
  year: 2006
  ident: 2224_CR19
  publication-title: Optimization
  doi: 10.1080/02331930600711448
– volume: 119
  start-page: 2111
  year: 2020
  ident: 2224_CR28
  publication-title: Proc. Mach. Learn. Res.
– ident: 2224_CR16
  doi: 10.1007/978-3-7091-2624-0_1
– ident: 2224_CR7
– volume-title: Numerics of Unilateral Contacts and Friction
  year: 2009
  ident: 2224_CR18
  doi: 10.1007/978-3-642-01100-9
– volume: 211
  start-page: 1373
  year: 2023
  ident: 2224_CR15
  publication-title: Proc. Mach. Learn. Res.
– volume: 69
  start-page: 525
  issue: 3
  year: 2017
  ident: 2224_CR36
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-016-0493-6
– volume: 6
  start-page: 1
  issue: 1
  year: 2021
  ident: 2224_CR32
  publication-title: Minimax Theory Its Appl.
– volume: 32
  start-page: 402
  issue: 3
  year: 2022
  ident: 2224_CR44
  publication-title: SIAM J. Optim.
  doi: 10.1137/21M1410063
– volume: 36
  start-page: 1
  year: 2023
  ident: 2224_CR34
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Set-Valued Force Laws
  year: 2001
  ident: 2224_CR17
  doi: 10.1007/978-3-540-44479-4
– volume: 6
  start-page: 1
  issue: 4
  year: 2010
  ident: 2224_CR24
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1824777.1824783
– ident: 2224_CR25
– volume: 17
  start-page: 836
  issue: 3
  year: 2011
  ident: 2224_CR13
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2010024
– volume: 97
  start-page: 4656
  year: 2019
  ident: 2224_CR8
  publication-title: Proc. Mach. Learn. Res.
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  ident: 2224_CR30
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– ident: 2224_CR43
  doi: 10.1007/s10107-019-01382-3
– volume: 108
  start-page: 4012
  year: 2020
  ident: 2224_CR26
  publication-title: Proc. Mach. Learn. Res.
– volume: 119
  start-page: 7088
  year: 2020
  ident: 2224_CR9
  publication-title: Proc. Mach. Learn. Res.
– volume: 168
  start-page: 123
  issue: 1–2
  year: 2018
  ident: 2224_CR11
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-016-0992-8
– volume: 18
  start-page: 1435
  issue: 5
  year: 2008
  ident: 2224_CR49
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127408021099
– volume-title: Introductory Lectures on Convex Optimization—A Basic Course
  year: 2004
  ident: 2224_CR54
  doi: 10.1007/978-1-4419-8853-9
– volume: 44
  start-page: 2169
  issue: 11
  year: 1999
  ident: 2224_CR50
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.802938
– volume: 29
  start-page: 361
  issue: 2
  year: 2021
  ident: 2224_CR48
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-020-00559-9
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 2224_CR46
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 23
  start-page: 539
  year: 2003
  ident: 2224_CR20
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/23.4.539
– volume: 195
  start-page: 1228
  year: 2023
  ident: 2224_CR35
  publication-title: Proc. Mach. Learn. Res.
– volume: 178
  start-page: 503
  year: 2019
  ident: 2224_CR41
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1311-3
– volume: 31
  start-page: 915
  issue: 1
  year: 2021
  ident: 2224_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1322716
– volume: 2020
  start-page: 1
  issue: 12
  year: 2020
  ident: 2224_CR6
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/abcaee
– volume: 22
  start-page: 1
  issue: 73
  year: 2021
  ident: 2224_CR10
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 3
  year: 2001
  ident: 2224_CR12
  publication-title: Set-Valued Var. Anal.
  doi: 10.1023/A:1011253113155
– ident: 2224_CR38
– volume: 28
  start-page: 1867
  issue: 2
  year: 2018
  ident: 2224_CR39
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1133889
– volume: 17
  start-page: 67
  year: 1982
  ident: 2224_CR42
  publication-title: Math. Program. Stud.
  doi: 10.1007/BFb0120959
– volume-title: Convex Analysis
  year: 1970
  ident: 2224_CR51
  doi: 10.1515/9781400873173
– volume: 113
  start-page: 7351
  issue: 47
  year: 2016
  ident: 2224_CR3
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1614734113
– volume: 193
  start-page: 704
  issue: 1–3
  year: 2022
  ident: 2224_CR33
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01859-2
– volume-title: Introduction to Optimization
  year: 1987
  ident: 2224_CR52
– ident: 2224_CR21
  doi: 10.1017/CBO9780511804458.003
– volume-title: The Elements of Statistical Learning
  year: 2009
  ident: 2224_CR55
  doi: 10.1007/978-0-387-84858-7
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 2224_CR31
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000024
– ident: 2224_CR37
  doi: 10.1103/PhysRevLett.133.057401
SSID ssj0001388
Score 2.446026
Snippet We exploit analogies between first-order algorithms for constrained optimization and non-smooth dynamical systems to design a new class of accelerated...
SourceID crossref
SourceType Index Database
Title Accelerated first-order optimization under nonlinear constraints
WOSCitedRecordID wos001471774400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2qKgYYeCPe8sAGlnAcJ_ZGhagYoEI8qm6R7VxLHSgoDXw_12laOsDQJZKlyI6OlXtOHvccgAtlnEMpUh5K43kaPNVBVBmXHlVqtcxUY6YzfMgHAz0amacOXP37BT82uYn4Oi2JncREODw-64gsiXEFzy_DRdkVUut5PmsUBW2HzN9TLLHQEp30t1a7kG3YbGUj6832eQc6ONmFjSUzQRo9LhxYp3tw0_OeGCUaQZQsjEnj8cZlk31QjXhvmy9Z7CCr2GRml2Er5qNajKER9XQf3vp3r7f3vE1L4J4ouqZjKaVBbbVC44XHUForNFonFAqfICq6w1xM5HQED0ZjMJeQWkqE1c6U8gC6tB4eArO5kxhCrlObp86F-KepsNfGBhoblx3B5Ry94nNmilH82h9HlApCqWhQKsTxSmefwHrSQJzyRJxCt66-8AzW_Hc9nlbnzZb_ABK4o2U
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+first-order+optimization+under+nonlinear+constraints&rft.jtitle=Mathematical+programming&rft.au=Muehlebach%2C+Michael&rft.au=Jordan%2C+Michael+I.&rft.date=2025-04-21&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007%2Fs10107-025-02224-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_025_02224_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon